

Project no. FP6-028038

Palette

Pedagogically sustained Adaptive LEarning Through the exploitation of Tacit and
Explicit knowledge

 Integrated Project
Technology-enhanced learning

D.KNO.06
KM services for CoPs

Due date of deliverable: January 31, 2008
Actual submission date: February 11, 2008

 Start date of project: 1 February 2006
 Duration: 36 months
 Organization name of lead contractor for this deliverable: INRIA

Project co-funded by the European Commission within the Sixth Framework
Program

Dissemination Level

R PUBLIC PU

Keywords: Knowledge Management, Services, Semantic Web, Ontologies, Annotations
Responsible partner: Rose Dieng-Kuntz (INRIA)

 2

 3

Deliverable manager: Olivier Corby (INRIA)

List of contributors:
Rose Dieng-Kuntz (INRIA)
Benjamin Gateau (CRP HT)
Adil El Ghali (INRIA)
Jean-David Labails (CRP HT)
Bassem Makni (INRIA)
Stéphane Rieppi (ULg)
Étienne Vandeput (ULg)
Amira Tifous (INRIA)
Alain Vagner (CRP HT)
Marie-Laure Watrinet (CRP HT)

MODIFICATION CONTROL

Version Date Status Modifications made by

V0.1 12/12/2007 Amira Tifous (INRIA) :
chapter on SweetWiki

V0 2 12/12/2007 Alain Vagner
Jean-David Labails
Yannick Naudet
Marie-Laure Watrinet
Benjamin Gateau (CRP
HT) : chapter on Bayfac

V0.3 15/12/2007 Bassem Makni, Rose
Dieng-Kuntz (INRIA):
chapter on
SemanticFAQ

V0.4 18/12/2007 Stéphane Rieppi,
Étienne Vandeput, ULg :
evaluation of
SemanticFAQ

V0.5 18/12/2007 Adil El Ghali (INRIA) :
chapter on KM
LinkWidget

V0.6 18/12/2007 Draft Olivier Corby (INRIA) :
first integration

V0.7 18/01/2008 Draft Adil El Ghali :
complements on
SweetWiki & second
integration

V0.8 23/01/2008 Draft Rose Dieng-Kuntz:
corrections +
introduction and
conclusion

V0.9 23/01/2008 Draft Olivier Corby : last
integration

V1.0 23/01/2008 Sent to Reviewers Rose Dieng-Kuntz

 28/01/2008 Feedback of Reviewer Nikos Karacapilidis
(CTI)

 Feedback of Reviewer Aida Boukottaya
(UNIFR)

 31/01/2008 Feedback of Reviewer Manfred Kunzel
(UNIFR)

 Corrections
taking into
account
reviewers’
reports

All

V1.9 05/02/2008 Integration of the
corrections

Amira Tifous

V2.0 11/02/2008 Sent to SC Rose Dieng-Kuntz

 4

List of evaluators:
Aida Boukottaya, EPFL
Nikos Karacapilidis, CTI
Manfred Kunzel, UNIFR

Acknowledgements
We thank very much Khaled Khelif and Hacène Cherfi for their support for SemanticFAQ.

Summary

This deliverable describes several KM services developed for CoPs. It details the current achievements on
the developments of the semantic wiki SweetWiki offering collaborative knowledge creation services. It
presents SemanticFAQ that offers a service for semi-automatic annotation of a corpus of e-mails and
enables information retrieval from such e-mails. The results of a first user-centered evaluation of
SemanticFAQ portal are also presented. Then we describe the principles and architecture of the KM
LinkWidget, that is aimed at enabling CoP members to link resources stored in a repository with
conversations in a discussion forum, by using semantic annotations of the resources and the discussions.
Last, the deliverable describes the new functionalities of BayFac (offering a service of document
classification and search), developed in order to take into account remarks of CoP members.

 5

Contents

Chapter 1 Introduction ...7
Chapter 2 Collaborative Knowledge Creation Service: SweetWiki ..9

2.1. Current achievements ...9
2.1.1 Bug correction ..9
2.1.2 Interface improvements ..10
2.1.3 URIs visibility and multiple ontologies..11
2.1.4 Password management ...11
2.1.5 SPARQL query library ...12
2.1.6 Restructuring the source tree ..17
2.1.7 Awareness through RSS feeds subscription ...19
2.2. Future development ..20
2.2.1 First planned release ...20
2.2.2 Second planned release...21
2.2.3 Perspectives ..22

Chapter 3 Semi-automatic Annotation and Information Retrieval from Mails: SemanticFAQ23
3.1. Introduction ..23
3.2. Definition..23
3.3. Semantic annotation of mails ...24

3.3.1 Metadata annotation..24
3.3.2 Content annotation..25

3.4. Algorithm for information retrieval from mails...26
3.5. Information Retrieval from Mails...27

3.5.1 Ontology based navigation ...27
3.5.2 Semantic portal ...27

3.6. User-centered analysis of SemanticFAQ..29
3.6.1 First Look..29
3.6.2 Ludicity...30
3.6.3 Ontology enrichment ..31
3.6.4 Ergonomic analysis and suggestions for future releases ...32

3.7. Related Work and Further Work ..34
Chapter 4 KM LinkWidget ..37

4.1. Introduction ..37
4.2. Definitions ..37
4.2.1 Repository and Semantic Repository ...37
4.2.2 Forum ...38
4.3. How it will work...39
4.3.1 Annotation of resources..39
4.3.2 Annotation of discussions...39
4.3.3 Collecting external annotations ..40
4.3.4 Retrieving/Calculating Links..40
4.3.5 Displaying Links ..40
4.4. Architecture ..40
4.4.1 Used technologies...41
4.5. Scenario of use by CoPs ...41
4.5.1 Did@cTIC ..41
4.5.2 Learn-Nett...42
4.6. Conclusions ..42

Chapter 5 Faceted Classification and Search Service: BayFaC...43

 6

5.1. Functional update ...43
5.1.1 Role management ...43
5.1.2 Private document management...44
5.1.3 Facet management ..44
5.1.4 Installation and configuration...47
5.1.5 Facet Ontology improvement ...48
5.2. Interface improvement..49
5.2.1 Classification evaluation ..49
5.2.2 Search evaluation..50
5.3. Bayesian Performance feedback and evaluation ..50
5.4. Interoperability ...51
5.4.1 REST Web Services ...51
5.4.1.1. Context..52
5.4.1.2. BayFac Search..53
5.4.1.3. BayFac Classification..53
5.4.2 Data import ...54

Chapter 6 Conclusions ...57
Appendix A BayFac WADL..61
A.1. Main WADL file ..61
A.2. defaultMessage.xsd ..64
A.3. facet/index.xsd..64
A.4. facet/show.xsd ..65
A.5. facetItem/index.xsd ..65
A.6. facetItem/show.xsd...65
A.7. facetVector/create.xsd ..65
A.8. facetVector/index.xsd...66
A.9. facetVector/show.xsd ...66
A.10. facetVector/update.xsd...67
A.11. fs/index.xsd...67
A.12. fs/show.xsd...67
A.13. instance/create.xsd..68
A.14. instance/index.xsd ..68
A.15. instance/show.xsd...68
A.16. instance/update.xsd...68

 7

Chapter 1 Introduction

The deliverable D.KNO.04 [D.KNO.04] presented several basic KM services: (a) services
based on Corese such as administration service, ontology management, annotation
management, retrieval and export; (b) services based on Generis such as ontology edition,
knowledge annotation and knowledge retrieval. It also introduced two complex KM services:
SweetWiki that offers collaborative knowledge creation services and BayFac that offers
service of document classification and search.

This deliverable details the new developments of SweetWiki and BayFac services and
introduces new complex KM services:

• SemanticFAQ, a service for semi-automatic annotation of a corpus of e-mails and
information retrieval from such e-mails. Such a service can be useful for CoPs
exchanging through e-mails (e.g. @pretic CoP) or even discussion forums.

• KM LinkWidget, a service aimed at enabling CoP members to link resources stored in
a repository with conversations in a discussion forum, by relying on semantic
annotations of the resources and the discussions.

Chapter 2 will focus on SweetWiki current achievements (refactoring, bugs correction,
interface improvements, SPARQL query library, password management and awareness
through RSS feeds subscription).

Chapter 3 details SemanticFAQ, the techniques for semi-automatic annotation of a corpus of
e-mails, the ontology-based navigation on such e-mails (relying on the @pretic ontology
described in deliverable D.KNO.05) and the semantic portal developed, as well as its
evaluation by @pretic CoP mediator.

Then chapter 4 presents a new service, KM LinkWidget, aimed at being used by Did@ctic
and Learn-Nett CoPs. The deliverable describes the principles and architecture of this service
aimed at enabling CoP members to annotate resources and discussions and at retrieving links
between resources and discussions.

Chapter 5 describes the new functionalities of BayFac developed in order to take into account
feedback of CoP members: role management, private document management, facet
management, and improvements of classification and search interfaces as suggested by CoP
members, Interoperability is offered through implementation of BayFac classification and
search features as RESTful services.

After conclusions in chapter 6 summarizing the contributions of this deliverable and the
further work planned on KM services in WP3, the appendix presents the BayFac WADL files.

 8

 9

Chapter 2 Collaborative Knowledge Creation
Service: SweetWiki

In this chapter, we detail the current achievements on the development of the semantic wiki
SweetWiki and give the outlines of the future development to be made. These improvements
are mainly guided and motivated by the feedbacks gathered during the experiments that we
led with Palette CoPs on the use of SweetWiki [Vandeput and Ledent, 2007] [D.KNO.04].

2.1. Current achievements
The first achievements concern the development having been done for the versions v1.5 and
v1.7 (ongoing work). A major part of this development dealt with code refactoring and bug
correction.

2.1.1 Bug correction
A few examples of such bugs:

• Search queries with multiple tags: the AND operation aiming at returning the pages
and objects (images, videos and attached files) tagged with all the tags submitted in the
query was not working well.

• Management of WikiWords: sometimes, the WikiWords were not detected.

• Management of tags and WikiWords with invalid characters: mechanisms for the
processing of the non valid characters have been implemented. The accentuated tags and
WikiWords are transformed to their closest non accentuated equivalents.

• Duplicated entries: for example in her HomePage, a user can specify the tags she's
interested in, so as to see the pages annotated with these tags only by accessing her
HomePage. The results being sorted according to the tags, it can happen that one page is
displayed many times (if it is annotated with many tags of the user's list).

Results = { (P 1,t 1), (P 2,t 1), (P 3,t 2), (P 1,t 2), ... } ;

Pi pages, t j tags

We improved this functionality so as to see the pages.
Results = { (P 1,(t 1,t 2)), (P 2,t 1), (P 3,t 2), ... }

• Pages with the same name, belonging to different Webs1: this situation led to have
incomplete queries results, because these queries did not take into account the Webs
which the pages belonged to. Therefore, only one of the pages was displayed, overwriting
references to the others.

• All the links in "Advanced Search/See all created links" were wrong.

• In "Advanced Search/See All Tags" option, the tags, their parents and the number of
pages and objects they are used to annotate are displayed. However, since the case of
multiple inheritance has not been considered, the layout of the parents tags of each tag
was not adapted.

• Office documents import: their management was not efficient enough since the non

1 A Web is a sub-space of the Wiki. A Web contains WikiPages, whereas a WikiPage belongs to one Web.

 10

local images were not displayed.

2.1.2 Interface improvements

• Table of content

We implemented for SweetWiki pages a widget allowing us to display the table of content of
the current WikiPage, based on its structure. This widget allows the user to have a glimpse of
the page content (particularly useful when the pages are long). It also enables to skip to the
desired section of the page by clicking on its corresponding title in the Table of content.

• Parameterized Look and feel

We enhanced SweetWiki with an easy to use interface enabling the wiki administrator to
parameterize the Look and Feel of each WikiWeb.

Figure 2.1: Interface for Changing the look of a Web

As illustrated by figure 2.1, the administrator can choose the Web to change and, for this Web,
its background color, the color of the interface components and widgets. The administrator
can also add a logo to the Web and adjust its position in the layout.

Each time one of these operations is executed, its result is real-time displayed on the current
page, changing its layout, so as to enable the administrator to have a view of the changes to
occur on all the pages that belong to the chosen Web.

Once the administrator validates the desired changes, the CSS that specifies the layout of the
pages of the Web is modified.

• Date/time layout

SweetWiki offers the possibility to the users to search for pages by building and submitting
advanced queries, based on multiple criteria, such as the modification date.

Considering that such information is very relevant, in a collaborative environment where a
page can be modified many times a day, and where the old versions of a current page can also

 11

be accessed, we made it more detailed than it was, by including the exact time of the
modification of the pages.

This improvement involved the modification of SweetWiki ontology which describes the
model of SweetWiki. In this ontology, the value type of the “modification” attribute of a
WikiPage has been modified from:

http://www.w3.org/2001/XMLSchema#date

to
 http://www.w3.org/2001/XMLSchema#dateTime

<rdf:Property rdf:ID= "modification" >

<rdfs:label xml:lang= "en" >last update </rdfs:label>

<rdfs:label xml:lang= "fr" >dernière modification </rdfs:label>

<rdfs:comment xml:lang= "en" >Date of the last update of the
document </rdfs:comment>

<rdfs:comment xml:lang= "fr" >Date à laquelle le document a été modifié pour la
dernière fois </rdfs:comment>

<rdfs:domain rdf:resource= "#WikiPage" />

<rdfs:range rdf:resource= "http://www.w3.org/2001/XMLSchema#dateTime" />

</rdf:Property>

2.1.3 URIs visibility and multiple ontologies
In the first versions of SweetWiki, the URIs used in the system were not accessible from out-
side. They have been modified in order to be accessed, which makes it possible to exploit
SweetWiki folksonomy and annotations by other Palette services. Here is the list of accessible
resources:

The wiki model http://sweetwiki.inria.fr/<instance>2/files/ontologie/wiki.rdfs

http://ns.inria.fr/sweetwiki/2007/08/wiki#

The folksonomy http://sweetwiki.inria.fr/<instance>/files/ontologie/folksonomy.rdfs

The queries library http://sweetwiki.inria.fr/<instance>/files/queries/queries.xml

Annotations for the
Page: PageName

http://sweetwiki.inria.fr/<instance>/files/rdf/Web_PageName.rdf

In addition, we make possible the use of multiple ontologies (other than the folksonomy) for
tagging. The CoPs can now use the O'CoP ontology or other domain ontology to tag their
pages. The semantic search will be improved thanks to the stronger organization of these on-
tologies compared to a folksonomy.

2.1.4 Password management
In this version, the wiki users have the possibility to receive their password by e-mail. The
development of this functionality was `not planned in the development schedule of
SweetWiki. However, it has been done, considering the high need expressed by the Palette

2<instance> stands for the name of the wiki instance we refer to. For example, for the wiki used by Palette
members it is swikipalette.

 12

users.

As a consequence, we had to modify the initial design of SweetWiki, in which this issue had
not been considered. Indeed, initially, the login information stored consisted of the user's
WikiName and password.

If a user wants to know her password automatically and autonomously, without appealing to
the administrators of SweetWiki, this password has to be sent to her by e-mail. Therefore,
passwords recovery functionality relies on an authentication based on the WikiName and e-
mail address of the users.

Thus, to cope with this issue, we had to modify the structure of the file containing the users'
login information.

This file is exploited by means of a servlet which is invoked when a user fills the form
dedicated to authenticate herself with her WikiName and her e-mail address. This servlet
checks the validity of the information provided by the user through the form, and if this
information is right, sends the user an e-mail containing her password.

2.1.5 SPARQL query library
We analyzed in depth the code of SweetWiki so as to factorize all the SPARQL3 queries.
These queries were embedded into the JSP pages and Java classes used to provide search and
layout functionalities (see the deliverable [D.KNO.04] for details). We gathered these queries
into an XML file following the DTD below.

<! ELEMENT queries (#PCDATA | query)*>

<! ELEMENT query (#PCDATA | comment | prefixes | sparql | parameters | refer enced-
in)*>

<! ATTLIST query id CDATA #IMPLIED >

<! ELEMENT comment (#PCDATA)>

<! ELEMENT prefixes (#PCDATA | prefix)*>

<! ELEMENT prefix (#PCDATA)>

<! ATTLIST prefix id CDATA #IMPLIED >

<! ELEMENT sparql (#PCDATA)>

<! ELEMENT parameters (#PCDATA | parametre)*>

<! ELEMENT parametre (#PCDATA)>

<! ATTLIST parametre id CDATA #IMPLIED >

<! ATTLIST parametre type CDATA #IMPLIED >

<! ELEMENT referenced-in (#PCDATA | param)*>

<! ATTLIST referenced-in file CDATA #IMPLIED >

<! ELEMENT param (#PCDATA)>

<! ATTLIST param id CDATA #IMPLIED >

Element Description

queries The root of the XML queries file

query The element corresponding to each SPARQL query

comment The natural language description of a query

3 SPARQL Query Language for RDF http://www.w3.org/TR/rdf-sparql-query

 13

prefixes Embeds the list of the prefixes used in the query

prefix The element corresponding to each prefix used in the
query

sparql The SPARQL statement

parameters Embeds the list of the parameters used in the query if it is
parameterized

parameter The element corresponding to each parameter used in the
query

referenced-in Corresponds to the list of the files where the query is
called

param The value of the parameter

Attribute Description

query id The identifier of the query, used to make a call to the
query

prefix id The identifier of each prefix

parameter id The identifier of each parameter

parameter type The type of each parameter

file The path of the file where the query is called

param id The identifier of the parameter used in the file where the
query is called

Then, we developed a SAX parser enabling to explore this XML file and provide an easy way
to reuse these queries.

· By the developers: it becomes easy to find all the queries and reuse the relevant ones for
extending the functionalities of SweetWiki. Moreover, when a query is called many times
in a page, it is better to have it loaded once and instantiated with different values for its
parameters than to load it many times. Finally, thanks to this library, it is also easy to
write new queries based on the existing ones for the non-SPARQL-expert developers.

· By the users: as a perspective, the descriptions of the queries might possibly be provided
to the users through an interface, enabling them to easily select the relevant queries to
embed into the pages they edit (so as to provide dynamic content to their pages), rather
than to write SPARQL queries by themselves. This possibility would raise an issue
concerning the layout of the queries results. Indeed, the results of the queries are
processed and displayed by means of XSL stylesheets which have to comply with the
schema of the results and the query itself (considering the information returned by the
query and amongst these information which ones to display). Actually, the only way to
include dynamic content into a WikiPage is to write, test and attach SPARQL queries to
the pages through SweetWiki editor.

Example of a query from the SPARQL queries library
<query id ="info_query" >

<comment> This query gives information about a page: its las t author, the web it
belongs to and the date of its last modification </ comment>

<prefixes >

<prefix id ="wiki" >http://sweetwiki.inria.fr/ontology# </ prefix >

 14

</ prefixes >

<sparql > select distinct ?author ?modification where {
?page wiki:name '$param1' . ?page wiki:author ?auth or . ?page wiki:hasForWeb
'$param2' . ?page wiki:modification ?modification } </ sparql >

<parameters >

<parametre id ="param1" type ="pageName" />

<parametre id ="param2" type ="webName" />

</ parameters >

<referenced-in file ="/jsp/header_wiki.jsp" >

<param id ="param1" >nomPage</ param >

<param id ="param2" >nomWeb</ param >

</ referenced-in >

</ query >

This query is called in almost all SweetWiki pages so as to display automatically information
about the name of the last modifier of the page and its modification date (see figure 2.2).

Figure 2.2: Use of a SPARQL query to fill widgets content

• Query optimization

During the first phase of SPARQL queries library building, we gathered all the queries
disseminated in SweetWiki pages into the structured file described previously. The second
phase consists of factorizing these queries and making their calls more optimized.

This leads to write generic parameterized queries, as shown in the following example, where
we factorized three queries into one.

The SPARQL queries below are called when a user submits a tag-based query.

“ImagesTaggedWith”, “VideosTaggedWith” and “AttachFilesTaggedWith” respectively return
the URIs of the images, videos and attached files uploaded on the wiki pages and annotated
with the tags of the user's query.
<query id ="ImagesTaggedWith" >

<comment> Images tagged with one or more tags </ comment>

<prefixes >

<prefix id = "wiki" >http://sweetwiki.inria.fr/ontology# </ prefix >

</ prefixes >

<sparql > select distinct ?doc ?page ?web group ?doc where {
?page wiki:includeDocument ?doc . ?page wiki:hasFor Web ?web . ?doc rdf:type
wiki:Image . ?doc wiki:hasForKeyWord '$param1' } </ sparql >

<parameters >

 15

<parametre id ="param1" type ="tag" />

</ parameters >

<referenced-in file ="/data/Tools/searchKeyword.jsp" >

<param id ="param1" > tagurl </ param >

</ referenced-in >

</ query >

<query id ="VideosTaggedWith" >

<comment> Videos tagged with one or more tags </ comment>

<prefixes >

<prefix id = "wiki" > http://sweetwiki.inria.fr/ontology# </ prefix >

</ prefixes >

<sparql > select distinct ?doc ?page ?web group ?doc where {
?page wiki:includeDocument ?doc . ?page wiki:hasFor Web ?web . ?doc rdf:type
wiki:Video . ?doc wiki:hasForKeyWord '$param1' } </ sparql >

<parameters >

<parametre id ="param1" type ="tag" />

</ parameters >

<referenced-in file ="/data/Tools/searchKeyword.jsp" >

<param id ="param1" > tagurl </ param >

</ referenced-in >

</ query >

<query id ="AttachedFilesTaggedWith" >

<comment> Attached files other than images or videos tagged with one or more tags
</ comment>

<prefixes >

<prefix id = "wiki" > http://sweetwiki.inria.fr/ontology# </ prefix >

</ prefixes >

<sparql > select distinct ?doc ?page ?web group ?doc where {
?page wiki:includeDocument ?doc . ?page wiki:hasFor Web ?web . ?doc rdf:type
wiki:File . ?doc wiki:hasForKeyWord '$param1' } </ sparql >

<parameters >

<parametre id ="param1" type ="tag" />

</ parameters >

<referenced-in file ="/data/Tools/searchKeyword.jsp" >

<param id ="param1" > tagurl </ param >

</ referenced-in >

</ query >

Factorized query

These three queries can be instantiated by the following generic one, in which the type of the
tagged object becomes a parameter of the query.

In this example, the three queries are called by the same JSP page. However, even if they
were called by different pages, this would not be a barrier to optimizing them, given that the
element “referenced-in ” and its sub-hierarchy enable to define, for each file in which the
query is called, the value for each one of its parameters.

 16

<query id ="ObjectsTaggedWith" >

<comment> Objects (Images, Videos or attached Files) tagged with one or more tags
</ comment>

<prefixes >

<prefix id = "wiki" > http://sweetwiki.inria.fr/ontology# </ prefix >

</ prefixes >

<sparql > select ?doc ?page ?web group ?doc distinct where { ?page
wiki:includeDocument ?doc . ?page wiki:hasForWeb ?w eb . ?doc rdf:type
wiki:'$param2' . ?doc wiki:hasForKeyWord '$param1' } </ sparql >

<parameters >

<parametre id ="param1" type ="tag" />

<parametre id ="param2" type ="docType" />

</ parameters >

<referenced-in file ="/data/Tools/SearchBy.jsp" >

<param id ="param1" > tagurl </ param >

<param id ="param2" > {Image, Video, File} </ param >

</ referenced-in >

</ query >

The layout of the results relies on the XSL stylesheets assigned to the query.

 17

2.1.6 Restructuring the source tree

• The initial structure of SweetWiki

 18

• The new structure of SweetWiki

To summarize, the components of SweetWiki that are directly accessed and manipulated by
the users are:

� the files stored in the “images” and “pub” repositories;

� the files stored in the “data” repository: when the users create, modify or access a
WikiPage;

� the files stored in the “files” repository: the files contained in this repository can be
accessed and exported. Those which are modified by the wiki users are those files
belonging to the sub-directories “ontology”, “rdf”, “users”, they contain the
folksonomy, the WikiPages annotations (each WikiPage is associated to an RDF file
containing its annotations. These annotations include the users' tags as well as other
meta-data like the page modification date, the identity of the user who last modified it,
the pages that are pointed by this page, etc.) and annotations describing the wiki users.

 19

The files that belong to the other sub-directories are used for processing. For example,
there is the SPARQL queries file, which includes the SPARQL queries for tag-based
search and those for widgets generation. To be displayed, the JSP WikiPages rely on
XSL stylesheets for displaying the SPARQL queries results.

2.1.7 Awareness through RSS feeds subscription
The development of awareness functionalities through RSS feeds subscription is a work in
progress. This work has been initiated to answer a recurrent request of the CoPs members,
who want to follow more efficiently the changes occurring on the wiki content. They will be
the main users of this functionality, but it will also be used by the CAKB4 [D.IMP.04] in order
to gather knowledge concerning the CoPs in SweetWiki.

It raises many issues about the choice of the queries that should be relevant for the users to
subscribe to.

Indeed, any query can contain information that users consider as relevant.

r can be constituted of:

� the set of the pages recently modified;

� the set of the pages annotated with the tags specified in q;

� the set of the pages containing objects (images, videos, attached files) annotated with
the tags specified in q;

� the set of the tags that are the most used to annotate pages and objects.

Thus, a query q is made of the definition of the set of items In to be returned as results (1 ≤ n ≤
nC + nP; nC: number of classes of the queried ontology, nP: number of the properties of the
queried ontology), added with various types of constraints Cm (filtering, counting, size, ...).

In addition, given that RSS feeds aim, by definition, at notifying the users of news or changes
in the content of a Web site, then the queries that are used to provide these information
include a temporal sorting parameter S.

The queries that appear to be useful for the users are:

� For the users who would like to have an insight into the whole wiki content: the recent
changes on SweetWiki pages;

� For the users who would like to have an insight into the content of a particular
WikiWeb: the recent changes occurring on the WikiPages that belong to this particular
Web;

� For the users who would like to be notified whenever a page has been annotated with a

4 WP5, task 2.

 20

tag that is relevant to them: the recent changes on the WikiPages that are annotated
with the tags which a particular user is interested in. These tags are defined by the user
through her HomePage.

Example of a SPARQL query returning the recent changes on a Web of SweetWiki

This query returns the list of the WikiPages that have been modified since the date specified
with the value of $param2 and that belong to the WikiWeb specified with the value of the
parameter $param1 .

• From SPARQL queries to RSS feeds

The processing of the SPARQL query, by the Corese engine [Corby et al., 2004] [D.KNO.03],
generates an XML document containing the results of the query. The schema of this XML
document complies with the W3C recommendation5 for SPARQL queries results.

RSS files being XML documents, we will have to perform a transformation on the SPARQL
queries results documents so as to make them compliant with the RSS format chosen.
Amongst the seven existing formats for RSS files (versions 0.90 to 2.0), we choose to adopt
the RSS1.0 specification6 (RDF Site Summary), which conforms to the W3C RDF
specification and is used for RDF-based applications. The transformation of the SPARQL
queries results documents to RSS files will be realized by means to an XSL stylesheet.

2.2. Future development

2.2.1 First planned release
SweetWiki will be improved with:

1. Interface related functionalities:

� By making the interface of SweetWiki adapt to the user’s preferred language, defined
in her profile. Indeed, an annotation file will be associated to each user, and profile
information, such as her preferred language will be formalized and exploited through
these annotation files. These annotations will be modeled through SweetWiki structure
ontology.

� Use of templates for the pages. These templates would be designed depending on the
Web they belong to.

5SPARQL Query Results XML Format http://www.w3.org/TR/rdf-sparql-XMLres
6RDF Site Summary (RSS) 1.0 http://validator.w3.org/feed/docs/rss1.html

 21

2. Improved tag-based search, enabling the submission of complex tag-based queries. The
user can then submit parameterized queries which involve the attributes or relations between
the tags (other than the specialization relations, already exploited in the current version of
SweetWiki).

3. A better management of access rights, based on the users' annotations and modeled through
SweetWiki structure ontology. This will imply to modify this ontology, and thus refactor
SweetWiki structure.

4. Upgrade of SweetWiki to the latest versions of SeWeSe and Corese [Durville and Gandon,
2007].

2.2.2 Second planned release
In this release of SweetWiki, it will be possible to:

1. Perform pages refactoring, enabling the wiki administrator to rename a page, move it to
another Web or delete it (only by moving it to a particular Web playing the role of a trash).

2. Edit the folksonomy in a more user-friendly way. To achieve this, we will pay attention to
the editor ergonomics and provide it with drag and drop mechanisms for the folksonomy
structuring (see Figure 2.3). These mechanisms will enable to completely structure the
folksonomy by allowing multiple inheritance, for example, and detailed formalization (see
Figure 2.4).

Figure 2.3: Mock-up of the ontology editor - Structuring interface

Figure 2.4: Mock-up of the ontology editor - Edition interface

3. Exploit tag versioning, that will allow us to perform temporal analysis on the use of tags.

 22

This would help to infer knowledge on the ontology (a concept that is never used to tag the
pages may be is not relevant and representative of the CoP), on the members of the CoPs
(inferences can be made on the expertise of a member depending on the categories of tags he
uses).

2.2.3 Perspectives
During the last months before the end of the Palette project, we will focus SweetWiki en-
hancement on:

1. Tagging improvement by enabling the authenticated users to tag the WikiPages without
imposing them to activate the pages editor.

2. Exploring the issue of (Semi)-Automatic tags organizing. Based on the use of the tags in
the wiki (webs and pages), or by some users (relying on their profiles). The issue concerning
these criteria has to be deepened so as to provide an efficient way to suggest an organization
of the tags that will enhance the search and thus, the learning through the use of SweetWiki.

 23

Chapter 3 Semi-automatic Annotation and
Information Retrieval from Mails: SemanticFAQ

3.1. Introduction
In this chapter, we present the SemanticFaq service developed for the @pretc CoP. It consists
of a web portal offering the navigation in the @pretic discussions using semantic web
technologies to ensure intelligent information retrieval from mails. We will describe our
methodology for building semantic annotations from e-mails and we will present preliminary
feedbacks of @pretic members.

@pretic is a community of teachers in Belgian secondary schools who are responsible for the
management of computer labs (CCM) in their schools. They have been exchanging
information for ten years through a mailing-list. The topics addressed in this mailing-list have
a large focus. There are complaints about people and organizations, pedagogical talks and
technical advice.

In order to boost @pretic's members interest in the CoP, the idea was formulated that some
kind of FAQ based on the mailing-list archives would make its members more interested in
the CoP. This idea came after the CoP's mediator tried to help them by giving them access to
PALETTE's tools and services. The feedback informed him that @pretic needed a tool that is
tailored to their needs more than general tools (such as web editors and wikis).

@pretic community is open to all teachers using Information and Communication
Technologies (ICT) in Belgium during their interactions with students or for preparing their
lessons. The members of this CoP communicate mainly by exchanging e-mails on a mailing
list: some mails describe the ICT encountered problems while other mails suggest solutions
for solving such problems.
During discussions between INRIA and the @pretic mediator for elaborating @pretic
scenarios in the framework of the so-called team B, the need to facilitate navigation of
@pretic members among past mails describing the ICT encountered problems or solutions to
problems previously discussed was stressed by the @pretic mediator. Therefore, INRIA
proposed an approach for creating semantic annotations on such mails. These annotations are
based on the @pretic ontology described in [D.KNO.05] and that INRIA partly created from
linguistic analysis of this corpus of mails.
The part of the @pretic ontology dedicated to ICT problems, comprises, among others, three
modular ontologies, each dedicated to a specific task:

� ONTOPEDIA: an ontology describing computer components,
� OEmail: an ontology for describing mails, and
� Technical Problems Ontology: an ontology for describing computer problems.

3.2. Definition
An annotation is a graphical or textual information about a document, and placed in the
document or outside in order to facilitate access, retrieval and use of this document. Semantic
Annotations refer to the knowledge modeled by an ontology. These are formal annotations, as
they are intended to be processed by software agents.
[Desmontils and Jacquin, 2002] divided the process of semantic annotation of documents by

 24

an ontology in sub-processes to:
1. Identify: manual or automatic process which involves placing references to the ontology
concepts in the document.
2. Instantiate: automatic or manual process to valuate the attributes of concepts using the
information contained in the document.
3. Improve: manual process aimed at adding information through attributes of concepts which
could not be valued in the previous phase.

3.3. Semantic annotation of mails

3.3.1 Metadata annotation
As described in D.KNO.05, the aim of Oemail ontology is the description of metadata on
mails. The annotation process consists of two sub-processes [Makni et al, 2007, 2008]:

1. Mail parsing: this process consists of acquiring the mail data in its raw form and of
extracting the headers and body of each mail in XML. For this purpose, we have
developed a mail monitor which listens to a mail server (IMAP or POP3) and builds
automatically an XML tree for each incoming mail. Our implementation is based on
JavaMail API7.

2. Mail annotation: this process involves mapping of XML elements detected in the
previous phase with their corresponding concepts in Oemail and then exporting to
RDF.

Table 3.1 illustrates an example of input and output of metadata annotation process8:

mail.xmlmail.xmlmail.xmlmail.xml mail.rdfmail.rdfmail.rdfmail.rdf

<message lang="french">
<number>1212</number>
<replyTo>2456</replyTo>
<reply>1211</reply>
<XMailer />
<Message_Id><B8B4C1CB.3750%p*****@wanadoo.be> <
/Message_Id>
<X_Sender />
<Mime_Version>1.0</Mime_Version>
<Content_Type>text/plain; charset="ISO-8859-
1"</Content_Type>
<Content_Transfer_Encoding>quoted-
printable</Content_Transfer_Encoding>
<X_Priority />
<X_MSMail_Priority />
<X_MimeOLE />
<auteur>*************</auteur>
<from>*********@wanadoo.be</from>
<recept>Personnes Ressources Bxl</recept>
<to>cefis_prbxl@lyris.det.fundp.ac.be</to>
<date>Wed Mar 13 08:43:55 CET 2002</date>
<subject>Re: [cefis_prbxl] La connexion ADSL
concrètement</subject>
<enc>ISO-8859-1</enc>
<text>Merci pour toutes ces infos ! Le subnet mask
est 255.255.255.0, je suppose ?</text>
</message>

<rdf:Description
rdf:about="http://reference.inria.fr/mails#1212">
<oem:Content-Transfer-Encoding>quoted-
printable</oem:Content-Transfer-Encoding>
<oem:From
rdf:resource="http://reference.inria.fr/pers#****** *"/>
<oem:Content-Type>text/plain; charset="ISO-8859-
1"</oem:Content-Type>
<oem:Mime-Version>1.0</oem:Mime-Version>
<oem:Message-
Id><B8B4C1CB.3750%*****@wanadoo.be></oem:Mess age-
Id>
<oem:To>cefis_prbxl@lyris.det.fundp.ac.be</oem:To>
<oem:ReplyTo
rdf:resource="http://reference.inria.fr/mails#1211" />
<oem:Subject>Re: [cefis_prbxl] La connexion ADSL
concrètement</oem:Subject>
<oem:Date>Wed Mar 13 08:43:55 CET 2002</oem:Date>
<rdf:type
rdf:resource="http://reference.inria.fr/OEmail#Repl yMes
sage"/>
</rdf:Description>

<rdf:Description
rdf:about="http://reference.inria.fr/pers#******">
<oem:E-Address>********@wanadoo.be</oem:E-Address>
<oem:EAddress>*********@skynet.be</oem:E-Address>
<oem:Nom>******</oem:Nom>
<rdf:type
rdf:resource="http://reference.inria.fr/OEmail#Emai lAdd
ress"/>
</rdf:Description>

Table 3.1: Metadata annotation example

7 http://java.sun.com/products/javamail/
8 In table 1, we have made the person names anonymous.

 25

3.3.2 Content annotation
For the annotation of content of a message (i.e. body of a mail), we used KIM (Knowledge &
Information Management platform) [Popov et al., 2003, 2004]. KIM provides an
infrastructure and services for automatic semantic annotation, indexing, and retrieval of
unstructured and semi-structured content. By default KIM contains an upper level ontology
called PROTON to describe high level concepts such as “entity” and “device”. To exploit
KIM platform we enriched PROTON ontology by @pretic ontology notably the Component
and Problem ontologies by specialization of “device” concept in “Computer science device”.
We made some changes on our knowledge base in order to match the input format of KIM
which uses specific properties such as "HasAlias" and "HasMainAlias" to support the multiple
labels for an entity. Then we developed a semantic annotation module, which queries the KIM
server through its API, gives the named entities detected for each text message and saves them
in RDF.

Disambiguation
Word sense disambiguation consists of removing the ambiguity of words that have multiple
meanings and giving them a unique sense. The natural language is rich with examples of
ambiguities; for example, the term "cold" can refer to a natural phenomenon or a sensation of
temperature depending on the context of use.
Our ontology contains such ambiguities because some terms can be attached to more than one
concept. The term "Intranet" for example can be an instance of the concepts Business
computing, Business tools, the Internet and Networks, while the term "Upgrade" can be
instance of "Hardware" and "Software" since an upgrade can be hardware or software.
The literature describes many disambiguation algorithms, which mostly rely on machine
learning techniques. We have developed our own disambiguation algorithm based on semantic
vectors.
Our idea is to keep among the ambiguous concepts the closest to the context. The latter is
determined by the named entities in the adjacent text.
Our algorithm generates a vector of all concepts found in the message, calculates a matrix of
semantic distances, and selects the concept which has the smallest semantic distance from its
neighbors.
Table 3.2 shows an example of calculation of the matrix of semantic distance with the
decision. This example shows that the terms "URL" and "RNIS" are ambiguous since they are
attached respectively to concepts ("World Wide Web", "Domain Name System") and ("Data
Transfer Rates","ISDN"). But the context formed by the terms URL, RNIS and Modem
detected in the message, enables to calculate the most likely concept. In this example, the
term "URL" was annotated by "Domain Name System" and the term "RNIS" by "ISDN", the
semantic global distances of which are the smallest in comparison with the concepts of
context.
Remark: we use the Corese semantic distance in our algorithm [Corby et al., 2004, 2006].

Term Concept World

Wide
Web

Domain
Name
System

Data
Transfer
Rates

ISDN Modems Global
Distance

Decision

0 0.76 0.76 0.77 0.76 3.0 World
Wide Web0.76 0 0.79 0.63 0.79 2.98

URL

Domain
Name
System

Domain
Name
System

 26

0.76 0.79 0 0.59 0.65 2.8 Data
Transfer
Rates

0.77 0.63 0.59 0 0.39 2.3

RNIS

ISDN

ISDN

Modems Modems 0.76 0.79 0.65 0.39 0 2.6 Modems

Table 3.2: Disambiguation algorithm execution

Annotator architecture
The architecture of our annotation system is shown in figure 3.1 which illustrates metadata
and content annotation.

Figure 3.1: Annotator architecture

3.4. Algorithm for information retrieval from mails
The originality of our algorithm that we have designed for information retrieval from mails is
that it retrieves the whole discussion feed annotated by a given concept through a unique
query to the semantic search engine Corese.
The idea behind this algorithm is the use of Corese graphs to build the discussion feed. Corese
implements SPARQL query language by graph homomorphism [Corby and Faron, 2007].
Our algorithm is based on five modules which are:

1. Global_Discussion_Feed: it builds all the paths guided by the “Oemail” property
“ReplyTo” which indicates that a mail is a response to another mail.
2. Query: it takes a concept as input and retrieves the mails annotated by that concept.
3. Paths_restriction: having a set of mails and the Global Discussion feed, this module
maintains the paths that cross mails of the set.
4. Paths_to_Tree: this recursive algorithm builds a tree from a given list of paths.
5. Tree_to_XML: it exports the tree in XML format.

 27

At starting time of web service, the Global_Discussion_Feed module builds a list of paths
containing the ReplyTo property. This is done by the extended SPARQL query with path:

prefix oem:<http://ns.inria.fr/palette/2007/12/OEmail#>
select $path
where {?x direct::oem:ReplyTo::$path ?y}
ORDER BY desc(pathLength($path))

The list of paths (Replies) is maintained in application scope as it will be used for each
request.
When the user selects a concept (Concept) the algorithm executes as follows:
 for each chosen concept {
 List <-- Query(Concept)
 Restricted_List <-- Paths_restriction(List,Repli es)
 Tree <-- Paths_to_Tree(Restricted_List)
 XML <-- Tree_to_XML(Tree)
 return XML
 }

The string containing the XML data is then parsed in client side and printed in tree form.

3.5. Information Retrieval from Mails

3.5.1 Ontology based navigation
The @pretic ontology aims at guiding semantic search among the frequently asked questions
to solve the problems faced by the CoP members. We have thus developed a Web interface
enabling ontology-based navigation in the description of problems and their answers. We
adapted the hyperbolic navigation [Munzner and Burchard, 1995] originally used in the
navigation of websites to ontology navigation.
Hyperbolic navigation has the advantage of giving an overall view well suited to a member of
the CoP that does not know the hierarchy of problems. The choice of a concept is followed by
a query to the semantic search engine Corese [Corby et al., 2004] to get the messages
annotated by the problem, the answers then displayed in the form of discussion feed.
In order to reduce the execution time of our Web application, the metadata are calculated and
displayed when the user flies over a message.

3.5.2 Semantic portal
We have designed a web portal application to encapsulate the hyperbolic navigation through
@pretic ontology. The main aim of choosing the portal architecture is to enable user profile
awareness and securing access to the CoP knowledge resources.
We have plugged some semantic functionalities in the @pretic portal, for example the
registration process checks whether the user is a member of the CoP by querying the metadata
annotations through Corese (see figure 3.2).

 28

Figure 3.2: Semantic management of registration

Information retrieval use case

We describe the search process by a scenario in which the CoP member seeks for printer
problems. After choosing the appropriate concept (Figure 3.3 section 1), the system queries
the semantic search engine Corese to get the discussion feeds annotated by the chosen concept
and prints it in a tree form (Figure 3.3 section 2). Finally the solution provided by the mail is
retrieved (Figure 3.3 section 3).
The @pretic portal allows the semantic navigation through Problem ontology and Component
ontology described in [D.KNO.05].

Figure 3.3: Hyperbolic navigation through the Problem ontology

Portal architecture
The portal architecture is illustrated by figure 3.4.

 29

Figure 3.4: Portal architecture

We have deployed the Corese search engine into a web service which will be queried by each
portlet. At startup time, the web service loads ontologies and annotations. The interface de-
fines function calls of web service such as getting mails annotated by a given component con-
cept or a problem concept.
The user portlet manages logging and registration actions.
The Component and Problem ontology portlets, allows the information retrieval guided
respectively by the Component and the Problem ontologies.
The ontology portlet gives a tree view to both ontologies.
The member could customize his/her vision by defining a dashboard. The administrator has a
more extended portlet for content management system and role management.

Used technologies

• Portal framework: We have chosen the JBOSS portal framework as it is an open source
portal in which we are plugging semantic functionalities.

• JSF components: The RichFaces components which also come from the JBOSS matrix
were the most suitable for the portal.

• AJAX libraries: To make the portal AJAX enabled for better performance by reducing
server call charge, we have used the AJAX4JSF libraries which add AJAX behavior to the
RichFaces components.

• Hyperbolic navigation: For hyperbolic navigation through ontologies, we have adapted
HyperGraph applet by transforming an RDFS file containing ontology description in
XML file containing nodes (Concepts) and edges (subClassOf properties).

3.6. User-centered analysis of SemanticFAQ

3.6.1 First Look
A first look at @pretic's semanticFAQ shows a refreshingly new interface concept, far from
the usual, conventional looking and hard to use mailing-list archives.

 30

@pretic's semanticFAQ, on the other hand, invites the user to walk through the messages and
to learn quickly from a message to another related message.

Other services have a tendency to bore users, in a way that they often do not even consider the
idea of using the service. In the best cases, they use the tool out of necessity, find the informa-
tion they search after a while and immediately quit the service, without trying to dig further.

Not trying to dig further is often a mistake, since reading peripheral messages give the users a
more complete and precise view of a problem and allows for a certain degree of mastery in a
topic.

Figure 3.5 @pretic's mailing-list archive, a conventional mailing-list archive system – austere
and of low efficiency

3.6.2 Ludicity
This brings us to a very important point about a missing feature in most of Palette's tools and
services: the ludicity aspect, i.e. the fun factor of the service. Most so-called 'Web 2.0 applica-
tions' have understood it and rely on it for their users to often visit their service.

The case of a mailing-list archive, of course, is different. The stakes are not the same since it
is out of the commercial realm. Nevertheless, the goal remains the same: make users actually
use the service. The more they will use it, the more they will find it useful. Not only will they
find the right information quickly, but a regular practice of the system will make them more
efficient in their use of the tool. On the other hand, there is little incentive to use a traditional
mailing-list archive regularly.

 31

Figure 3.6 @pretic SemanticFAQ, a highly innovative way to browse mailing-list archives

We believe that a good part of the added value of this tool is its ludicity. At this point, it is im-
portant to understand that a tool or service being somewhat entertaining means that the tool or
service cannot be serious. Ludicity, as we consider it in this chapter, has no pejorative mean-
ing: the @pretic semanticFAQ is fun and entertaining to use. This entertaining aspect is a
mean to attain a goal, i.e. enhancing the frequency of use of the tool and spread knowledge in
a more efficient way than what other similarly-aimed services allow.

3.6.3 Ontology enrichment
The ontology used for the creation of this prototype was the semi-automatic @pretic ontology
as it was extracted by the INRIA using the method described in the [D.KNO.05].

The CRIFA–ULg team worked out these shortcomings by suggesting three separate ontolo-
gies (which could be merged into a more encompassing one):
• Problems related to persons and groups (cf. the ‘Human Problem’ ontolgoy was created by

CRIFA-Ulg) ;
• Learning and teaching (this ontology was also developed by CRIFA-Ulg);
• Technical problems (usage of computers) (this ontology was created by INRIA).

In the SemanticFAQ prototype developed by INRIA and tested, by CRIFA-ULg we had ac-
cess to three tabs, 'Composants Informatiques', 'Ontologies' and 'Problèmes Informatiques'.
Were the CRIFA ontologies used, it would have given a far more fine-grained access to the
archives, because these ontologies were created specifically for the CoP. A few core @pretic
members helped the CRIFA researchers to make it as accurate and precise as possible.

 32

Please note that at this early stage of prototyping, it is perfectly acceptable not to have those
ontologies already integrated in the system. It made enough sense for us to conduct our initial
tests.

3.6.4 Ergonomic analysis and suggestions for future releases
The CRIFA team has developed a good experience in ergonomic analysis in the context of
WP1 task 7 (usability issues) and several PALETTE tools and services have been analyzed at
the time of writing this document (Amaya, SweetWiki, CoPe_It!, and eLogbook – this last
one is still work in progress).

The CRIFA team and a few core @pretic members had the chance to have a brief access to a
prototype of SemanticFAQ, in the short period of a few days. Therefore, the first part of this
section title, 'ergonomic analysis', is maybe a bit far-fetched: we were not able to apply our
established methodology in full, but used it as a guideline for a brainstorming session, which
gave results which were, in our opinion, sufficient given the fact that the service we had ac-
cess to was a prototype. We did not analyze it as thoroughly as other services, because some
of its UI problems were due to its early stage of development, not to a bad approach at UI ba-
sics and because of time constraints. A more complete and methodological approach will fol-
low as the service matures.

Figure 3.7 @PRETIC SemanticFAQ, preliminary ergonomic feedback

Nevertheless, here are a few things we noticed that could be improved. Not only will we no-
tice these, but we will also suggest functionalities that the CRIFA and @pretic members
thought would be useful in the future releases of the SemanticFAQ service. This section has
been written from the point of view of both CRIFA researchers and CoPs members.

Screen Layout
As seen in figure 3.7, there are three zones on the main screen. They seem to 'float' in an
awkward way on the screen. A better use of the screen estate would help.

 33

Figure 3.8 Suggested layout

We suggest to maximize the zone allocated to the Hypergraph navigator (emphasized in green
on figure 3.7 and figure 3.8) at the left of the screen (roughly 50% of the zone real estate),
which would allow for rich ontologies to be displayed and browsed with a greater ease of use.
At the top-right, the tree zone (red) would show the threaded view of the currently browsed
topic, while the selected message (blue) would be displayed in the bottom-right section of the
screen.

A clear separation of the three zones, through unequivocal graphical clues would greatly en-
hance the user experience. Please note that our red/green/blue rectangles are not intended to
suggest these visual clues but only to help the reader to understand our notices and advice. By
comparing figures 3.6 and 3.7, you can notice the 'floating' feeling we discussed before: the
three zones look like they are never anchored at the same place. A clear parting of the zones,
and a better anchoring of them at fixed zones would lessen the cognitive load of the service.

The threaded view
The threaded view, as it stands now, is a bit confusing: some messages have a 'folder' icon,
other have a 'page' icon. There is a logic to that: the messages with a 'page' icon are messages
that have not answers (end-of-thread messages). It is nevertheless confusing because it is gen-
erally accepted that a folder icon does not contain text itself. Moreover, it is redundant, be-
cause the tree metaphor already provides the needed visual clues, in a more satisfying way.

On a more general note, it seemed that all the messages were not present in the database. A lot
of messages seemed to be orphaned. Threading a mailing-list archive a posteriori is not al-
ways easy and we believe that at this stage of the process, the 're-threading' process was not
finished.

The message view
The message view is very important since it displays the actual searched content (the other
zones are just means to find the message). It would be helpful to:

 34

� show the title of the message in the title bar (instead of 'Corps');
� show the date and time of the message in the title bar (the date can sometimes be very

useful in determining the relevance of a message);
� allow to print the message and possibly the whole thread;
� restore the messages' formatting (no carriage returns make the messages hard to read);
� let the user magnify the font size, which is a bit small by default;
� emphasize the clicked/searched (see below) term, for instance by making its back-

ground color slightly yellow;

Various suggestions

• Provide a keyword search: in some cases, the user may know exactly what he searches in
the archive. In these cases, a classical free entry keyword search would help, especially if
the result would not only affect the message zone, but also the Hypergraph zone, placing
the message in its context in the ontology.

• Allow a two-terms (or more) ontology search: instead of just being able to search according
to one term taken from the ontology, for instance, 'ADSL', let the user chose a second
term, for instance, 'server'. In this example, only the messages tagged with 'ADSL' and
'server' would be displayed, automatically discarding a lot of messages discussing ADSL
connections but having nothing to do with servers.

• Add a rating system to messages: every identified user could be allowed to rate messages
(from 0 to 5 stars, for instance), so that in future searches, a particularly relevant message
would have more weight that an irrelevant one and would be displayed first.

• Add sorting options: sorting messages by date is often a good idea. Sometimes, sorting
them by author is even more useful (if a user knows that another user is an expert in a
given topic, for instance). Sorting them by relevance (thanks to the rating system we just
discussed) is also interesting.

3.7. Related Work and Further Work

In this chapter, we presented an approach for semi-automatic annotation on the mails
exchanged through a mailing list of the @pretic CoP.
Related work on annotation of texts offers numerous annotation tools detailed in the synthesis
offered by [Uren et al., 2006]. Such annotation tools can be compared according to:

• The nature of suggestions of the annotation tool: instances of concepts, values of their
attributes, instances of relations, metadata on named entities, etc.

• The storage of annotations: in the document source or in an annotation server.
• The language for representing annotations: XML for Cafetiere [Black et al., 2005],

RDF for Annotea project [Koivunen, 2005], SAMOVAR [Golebiowska et al., 2001],
OntoWatch [Cao et al., 2004], MeatAnnot [Khelif et al., 2005], or QBLS [Dehors et
al., 2005].

• The language for handling the reference ontologies used for creating the annotations.
• The type of processing: manual process vs. automatic vs. semi-automatic process.
• The automation techniques used: Natural Language Processing (NLP) using linguistic

techniques vs. machine learning.
• The fact that resources are internal or external.
• The nature of annotated resources: static Web pages, dynamic Web pages, multimedia

resources (images, video, audio) as Vannotea or M-OntoMat-Annotizer .…
• The evolution of annotation according to resource evolution.

 35

In the current state of the art, we distinguish the following approaches:

• Purely manual editors (such as OntoMat Annotizer [Bloehdorn et al., 2005], the
Mangrove system [McDowell et al., 2003] or Cohse annotator [Bechhofer et al.,
2003]).

• Manual, collaborative editors such as or Annotea [Koivunen, 2005] the W3C project
for collaborative annotation that proposes Amaya [Quint et al., 1997] and Vannotea.

• Use of manually written rules or wrappers in order to capture known patterns for the
annotations: e.g. Melita [Ciravegna et al., 2002] enables the user to write rules based
on regular expressions; Cafetiere [Black et al., 2005] is a rule-based system for
generating XML annotations.

• Supervised systems learning from sample annotations marked up by the user: e.g.
tools such as Ontomat, MnM [Vargas-Vera et al., 2002] and Melita include Amilcare
[Ciravegna et al., 2003] that learns how to annotate the documents by generalizing the
user’s annotations.

• Unsupervised systems using various strategies to learn how to annotate without user’s
supervision: e.g. Armadillo [Chapman et al., 2004] or Ontomat-Pankow relying on the
Pankow approach [Cimiano et al., 2004].

• Annotation service providers, offering such services on demand for users browsing
non-annotated resources: e.g. Magpie [Dzbor et al., 2003].

In [Azouaou, 2006], the author distinguishes cognitive annotations (intended to humans) and
computational annotations (intended to programs).
Here are our previous annotation systems:

• Samovar [Golebiowska et al., 2002], a system that uses Natural Language Processing
(NLP) techniques for semi-automatic creation or enrichment of an ontology from
textual comments of a database and for generation of RDF annotations of these textual
comments with the concepts thus created.

• MeatAnnot [Khelif et al., 2005], a system that uses and implements NLP techniques
to identify instances of concepts and relations of a reference ontology, in textual
scientific articles in biomedical domain in order to generate RDF annotations.

• QBLS [Dehors et al., 2005], an e-Learning system based on semi-automatic
generation of RDF annotations of learning resources after association of concepts of
ontologies (pedagogical ontology, domain ontology) to styles used in text processing
systems such as MS Word or Open Office.

• OntoWatch [Cao et al., 2004], a system dedicated to watch, relying on several
algorithms using an ontology in order to complete a user’s query sent to Google and
offering automatic generation of RDF annotations after the analysis of the structure of
the Google results.

In comparison with this related work, the originality of our work of semantic annotation and
information retrieval from mails comes from the use of mails as a source of knowledge
[Makni et al, 2007, 2008]. The specificity of the work presented in this chapter is the fact that
we work on a degraded corpus of mails, the poor linguistic quality of which makes harder the
use of NLP tools.
[Zhong et al., 2002] and [Sakurai and Suyama, 2005] offer mail mining but their main objec-
tive is email classification in order to filter spams for example as [Jongwan et al., 2007]

As a conclusion, mail mining seems potentially very useful in the framework of CoPs for
several reasons: (a) mails can be a main knowledge source in some CoPs such as @pretic, (b)
if the number of already existing mails of a CoP is huge, they cannot be handled manually and

 36

an automatic approach as offered by mail mining is necessary. So we have tried to offer a
generic approach so as to ensure its reusability for other CoPs communicating through mails
or discussion forums. We will extend this work in order to propose a semantic FAQ exploiting
the benefits of ontologies, semantic annotations and reasoning offered by our semantic search
engine Corese.

 37

Chapter 4 KM LinkWidget

4.1. Introduction
The knowledge space of CoP contains the resources produced and used by the CoP in its
activities, the content of this knowledge space is composed of resources of different natures:
many kinds of documents, discussion, ... These resources were modeled in the Resources
section of the O’CoP ontology [D.KNO.02]. From a computational point of view, these
resources are produced, manipulated and stored using different Palette services. When the
number of these resources grow, it becomes difficult for CoP members to find the relevant
resources for their activities, if they are localized or associated to services other than the one
they use. A service allowing the CoP members to easily find/access their resources across the
services they use will be quite useful when the number of the resources become important.
In the current work, we focus on a particular case of link between resources, namely the link
between:

(i) the “static” resources of the CoP stored in a repository and
(ii) the “dynamic” resources constituted by the discussion between CoP members in a

forum.

The KM LinkWidget will enable CoP members to link resources stored in a repository with
conversations in a discussion forum, by using semantic annotations of the resources and the
discussions. It will use the basic KM services described in [D.KNO.04] to achieve the basic
tasks of KM (annotation, retrieval, ontology management).

The widget will be implemented as navigator extension9, and will manage two kinds of
annotation bases, the first is local and will contain the personal annotations of the user, the
second is common to the CoP and will contain the public annotations of the CoP members.

In this chapter, we will first define some of the notions used to describe KM LinkWidget, we
will then propose an architecture of the service and expose some implementation choices, and
finally we will present a scenario of use of the service by some Palette CoPs.

4.2. Definitions

4.2.1 Repository and Semantic Repository

Repository
A repository is a central place where resources are stored, archived and maintained in an or-
ganized way. The resources can be of any type: texts, multimedia documents, ... In Wenger's
classification of useful tools for a CoP [Wenger, 2005], repositories can be either generic or
dedicated to a specific task (e.g. a LMS is a repository dedicated to learning resources). In this
work, we consider only web-repositories which are repositories with a web interface.

9 We choose to implement KM LinkWidget as a Firefox (http://www.mozilla.org/) .

 38

The most common organization of resources in a repository reproduces the structure of a file
system: hierarchical organization with directories containing sub-directories and files. For a
web-repository we define the access schema as the static schema describing this organization.
Figure 4.1 show an example of such a schema.

Figure 4.1 Example of access schema

Semantic Repository
A semantic repository is a repository where the organization of resources is entirely or
partially achieved by the use of semantic annotations of resources. In this case, the access
schema of the repository is composed by the ontology used to annotate the resources and the
static schema describing the non semantic structure of the repository if there is one.

SweetWiki (see. Chapter 2) can be seen as semantic repository of resources (the WikiPages
and the attached files), the static organization of resources consists of the system of WikiWebs
(that can be viewed as directories) and the semantic organization is achieved by tagging the
resources.

4.2.2 Forum
A forum is a service that hosts the interactions between users, these interactions are organized
into discussions and each discussion is composed of posts. Each user can read other users
posts and add his/her own contribution.
The forum is defined by its schema; Figure 4.2 shows an example of such schema:

Figure 4.2 Example of a forum schema

 39

A Semantic forum is forum where the discussions and posts are semantically annotated w.r.t.
an ontology.

4.3. How it will work
KM LinkWidget will allow users to manage the annotations associated to the resources in the
repository and the forum, and will use these annotations to establish links between these two
kinds of resources. The annotations can be:

(i) private, when the user annotate a resource or a discussion for his own usage, and do
not share it with the other members of the CoP.

(ii) public, when the annotation is shared with the other CoP members.
The service manage two kinds of annotation bases, a personal annotation base for private an-
notations, and a CoP annotation base which contains the public annotations of all the CoP
members. The CoP annotation base is stored in the repository, and the personal annotation is
stored locally for each user.

The KM LinkWidget is a service integrated to a web browser, when the user is browsing the
associated web-repository and web-forum, the widget uses the annotation bases to enrich the
displayed pages with the deduced associations between resources and discussions. It also al-
low users to add semantic annotations for a set of predefined operations, for example, when
uploading a document in the repository or when posting a new contribution in a discussion, ...

Let us see how the different components will work:

4.3.1 Annotation of resources
When the user is browsing the repository, s/he can annotate any resource; two cases are
thought out:
− operation-associated annotation: when the user adds/modifies a resource to the repository

the KM LinkWidget will propose an interface to annotate this resource, some of the anno-
tations (e.g. Ownership of the resource, Version, Date, ...) are calculated automatically. In
addition, user can add his/her own annotations (e.g. keywords, subject, ...)

− free annotation: the user can also update/modify the existing annotations of a resource.

4.3.2 Annotation of discussions
When browsing the forum, the user can annotate the discussions or the posts, the annotation
can either be associated to an operation in the forum or free:
− operation-associated annotation: when starting a new discussion or reply in an existing

one, the KM LinkWidget display an annotation interface to annotate the discussion or the
post. Some of the annotations are calculated automatically (e.g. Ownership, Date, Subject,
...). The user can also add his own annotations.

− free annotation: the user can update/modify the existing annotations of a discussion or a
post.

 40

4.3.3 Collecting external annotations
If the browsed site (repository or forum) contains embedded annotations (e.g. Microformats10,
RDFa11, ...) KM LinkWidget extract them and add/use them as annotations for the resource or
the discussion.

4.3.4 Retrieving/Calculating Links
The main operation of KM LinkWidget is the retrieval of the associations or links between the
resources and the discussions. This calculation is based on a set of queries, these queries being
defined w.r.t. the CoP ontology, and can be parameterized for each user. Here are some exam-
ples of queries that can be used:
− retrieve the resources which have the same subject as a discussion;
− retrieve the resources owned by the user in the repository and having the same subject as

the discussion containing a post;
− retrieve the discussions related to a resource.
− ...

4.3.5 Displaying Links
The calculated links are displayed directly in the viewed page on the browser, or in a sidebar
during the navigation. For example, a list of tags associated to a discussion can be directly
displayed in the viewed page, while some other information, like the list of the resources
owned by the user related to the current discussions can be viewed in the sidebar. The user has
the possibility to configure the displayed queries, and also how s/he wants the results to be
displayed.

4.4. Architecture

Figure 4.3 KM LinkWidget architecture

10 http://microformats.org/wiki/
11 http://www.w3.org/TR/xhtml-rdfa-primer/

 41

Figure 4.3 shows the architecture of the KM LinkWidget. The visible part for the user is com-
posed of a set of Javascript components used to gather information from the user in order to
annotate resources and discussions, or directly from the displayed page to extract embedded
annotations, and a component to display the retrieved links/associations into the current page
or in the sidebar.

The back-end of LinkWidget is composed of two modules:
− an annotation module: to add/remove annotations from the user annotation base, and pub-

lishing public annotations added by the user to the CoP annotation base.
− a retrieval module: to calculate the links/associations using user annotation base and CoP

annotation base, and the query libraries.

These two modules use the basic KM services based on Corese/SeWeSe described in
[D.KNO.04].

4.4.1 Used technologies
The technologies that will be used in the implementation will be:
− Firefox: the application platform
− XUL: the extension’s user interface language
− Javascript: the front-end and extension’s scripting language
− Java: the back-end programming language
− Jetty: the embedded web server
− SemServices: for the basic KM operations
− Grrdl: for the extraction of RDF annotations

4.5. Scenario of use by CoPs

4.5.1 Did@cTIC
The Did@cTIC CoP has three main motivations for using the KM LinkWidget:

1. to facilitate the capitalization of pedagogical resources which are created during small
discussion groups exchanging about the teaching practices and experiences;

2. to facilitate the enhancement of both “explicit” and “tacit” knowledge appearing
during the interactions about different teaching subjects;

3. to help the production of new documents (with DocReuse) that will be used in
particular by the CoP members or during other teaching courses given by the
Did@cTIC trainers.

LinkWidget can help CoP members to answer these needs as follows:

1. During an interaction about the teaching practices and experiences, the user can be
provided with all the resources related to the discussed subject that are available in the
repository of the CoP. The cross links from these resources to a previous discussion
can also help the CoP members during their exchange.

2. The informal knowledge of the CoP contained in the different discussions can be more
easily accessed, using the links between this informal knowledge and the formalized
knowledge of the CoP included in some reference documents available in the
repository.

 42

3. The production of new documents using DocReuse can be enhanced by the retrieval
capabilities of LinkWidget.

4.5.2 Learn-Nett
The Learn-Nett CoP members use the forum of moodle for their discussions. They also pro-
duce documents in SweetWiki and store them in BayFac. LinkWidget can help them to make
a link between their discussions and the resources produced in Sweetwiki and those stored in
BayFac. Moreover, the two repositories have in this case semantic capabilities that will enable
the use of LinkWidget with a minimal annotating effort from the users.

4.6. Conclusions
In this chapter, we presented a cross-services retrieval and annotation widget, which aims to
help CoPs members to exploit more efficiently two of knowledge channels available in the
CoP knowledge space: interactions and stored resources.
This work takes advantage of the new technologies of the Web 2.0, together with semantic
web technologies. It has been inspired by related work: for instance, (i) PiggyBank [Huynh et
al., 2005] a browser extension that allows user to extract semantic data from web pages, (ii)
Diggo12 a social annotation tool, that allows users to collect and share their bookmarks, and to
annotate web pages.
The particularity of our work is the use of semantic annotations to link resources across dif-
ferent knowledge channels, in the context of a CoP. It takes advantage of the previous devel-
opment of WP3, mainly (i) the O'CoP ontology used as a reference ontology to annotate re-
sources, and (ii) the basic KM services to achieve basic operations of knowledge manage-
ment: annotation, retrieval.

12 http://www.diigo.com/

 43

Chapter 5 Faceted Classification and Search
Service: BayFaC

5.1. Functional update
This part describes the new functionalities developed or being developed in response to the
questions and remarks of CoP members. The first part explains the different roles we have
defined inside BayFac. We will, then, see that with the connection process due to the role
management, we can specify some documents to be accessible only to known users (private
access) and others that can be read by an anonymous visitor (public access). In a third part, we
will see the way to manage facets within BayFac. In the fourth part, an installer developed in
order to facilitate the diffusion of BayFac will be described. Finally, we will explain some
changes in the facet model.

5.1.1 Role management
BayFac includes now the management of roles. This increases security, allowing us to manage
access to resources and actions, according to different kinds of users. Currently, anonymous or
normal users only have a consultative access: they can browse and search the set of public
documents. Login is mandatory to access private documents, and also to access other
functions than search.

As illustrated in Figure 5.1, one single role is allowed per user. Roles are hierarchically
organized. The different roles are defined by the action(s) allowed, and each role inherits from
the actions allowed for its parent. Here is the list of defined roles, in increasing rights order:

�Search: Allows us to use the search functionality only.
�Classify: Allows us to use the search and classification functionalities.
�Facet management: Allows us to manage facet spaces and facets.
�Ontology management: A link to Generis (the ontology manager detailed in the chapter 3
of the [D.KNO.04]) is provided in addition to the previous rights, allowing making
changes in the ontology and more generally the knowledge base used by BayFac.
�Administration: An administration tab is provided to access the previous functionalities.
In addition, it allows user management and some system functions, as the “Empty cache”
function.

Figure 5.1 presents the user management interface. The screen is composed of the users list to
see who is defined and with which role. The manager can change the rights of each person by
clicking on his login or simply delete him with the basket button. A little form to add a user is
also provided. In this form, the manager has to specify the login and the password for
connection but also the role of this user. The possible role list is deployed in the print screen
of figure 5.1.

 44

Figure 5.1: BayFac user management

5.1.2 Private document management
Once a role has been given to a user, this role allows private documents access. When a user
adds a document, this user can tell if it is a public or a private one, as illustrated by figure 5.2.
Public documents are visible by anyone who comes on this BayFac without connection
requirement (login and password). The private documents access needs a user connection.

Figure 5.2: Private document management

5.1.3 Facet management
The facet spaces, as well as the facets, exploit concepts of the CoP’s ontology used for
document or other entity description and classification. One of the most important assets of
BayFac is its genericity regarding the facets: the facets can be chosen from the CoP’s
ontology and their function can be defined regarding the facet model explained in
[D.KNO.04]. That is why we have provided an interface to manage13 the facets and the facet
spaces.

13 To manage the facets, the user must have a role 3 or more (cf. point 5.1.1. Role management).

 45

Facet space configuration
The facet space defines the classification scheme (i.e. the facets) in which the user will index
his documents or other entities and perform search on them. As explained previously in
[D.KNO.04], a facet space is defined by a class of the ontology, corresponding to the entities
to be classified. As displayed in figure 5.3, the user can choose this class from the list of
classes of the CoP’s ontology. Once the class is chosen (“Groupe” in figure 5.3), BayFac must
be informed if a file has to be attached to the instances added.

Figure 5.3: Choose a facet space

The user specifies the need of upload of document or/and the need of the specification of an
URI (see figure 5.4). This seems easy to understand for search & classify documents but it is
lesser for a person for whom no document is needed. This eventual attached document should
be specified by a property in the business ontology. If the user does not know which property
it is, a default one could be selected via the “I don’t know” box as illustrated in the picture
above.

 46

Figure 5.4: Choose a property to be specified when a document is attached

To validate its choice, the user has to click on a button in the bottom of the page. If he clicks
on the “Define another facet space” button, the information he has specified about the facet
space will be stored and the interface reappears with the new configuration as we can see for
the Document concept already specified in figure 5.4. In the same way if he clicks on the
“Define another browsed class” button, the information he has specified about the browsed
(by the semantic browser, see section 5.2 of the [D.KNO.04]) class. Until the user clicks on
the “Finish” button, the result of its actions will be written on the configuration screen as
illustrated in figure 5.4: “Below, facet spaces already specified…”.

Facet configuration
Once the facet spaces are defined, the user can define the facets for each facet space. A listing
of the facets is reachable, as illustrated in figure 5.5, for users with at least a role 3.

Figure 5.5: Listing of the defined facets

 47

In this interface, the user can choose to delete, add or update a facet, as shown on the printed
screen in figure 5.5.

The label of each facet is a link to its modification page. The basket next to the label is a
deletion button to remove the facet.

Creation or update of a facet can be done using the same form, which is illustrated in figure
5.6.

Figure 5.6: Facet definition form

In this interface (figure 5.6), the user can define the facets according to the facet model (see
section 5.2 of the [D.KNO.04]). The model must be well known by the user. A detailed
documentation has to be done to describe it in order to help the user to define a facet by
himself without help from BayFac’s developers.

5.1.4 Installation and configuration
BayFac is provided with an installation system. When the Generis and the BayFac directories
are deployed (simply by copy) on the concerned Web server, the user can call, with a browser,
the root of his BayFac repository. The installation interface (see figure 5.7) appears then and
the three-step configuration of BayFac begins: First, the installation of the CoP’s ontology,
then the facet spaces configuration, and finally the facet configuration.

 48

Figure 5.7: Installation form

As illustrated in figure 5.7, in the first step, the user needs to have the file of the CoP’s
ontology he wants to exploit with BayFac. He needs to specify:

�The name he wants to see appearing on “his” BayFac, typically, the name of the CoP.
�The model namespace is the namespace of the ontology.
�The local namespace is the namespace of the instances.
�The RDFS file of the ontology.

BayFac creates a module for itself in Generis with the facet ontology and the CoP’s one
(specified thanks to the form of figure 5.7). If it is done correctly, the user is directed to the
second step: the facet space configuration to choose what he wants to search & classify (cf
section “facet space configuration”). Finally, the user can create the facets for each facet space
as explained in the previous section. After these steps, BayFac is properly configured and
ready to be used.

5.1.5 Facet Ontology improvement

The use of BayFac by PALETTE CoPs (namely Form@Hetice and LearnNett) has generated
new requirements. For some of them, a solution is found more logically by modifying the
facet model, than by developing a new function in the application.

In the first part, we explain how a facet can specify a property of the facet space concept in
the ontology. And in the second one, we present the new facet model.

Property specification
The classification process in BayFac can specify some properties of the concerned facet space
class (for example, the “has Author” property of the facet space “document”). The case occurs
when the facet exploits a class directly linked to the class of the facet space by a property. For
instance, it is the case for the facet “Author” of the facet space “Document”: a property
“WrittenBy” links directly the two concerned classes. In a first step, BayFac searches the
concerned property by searching a property linking the two concerned classes. This way to
proceed finds its limitation when several properties link the two concerned classes. In order
for the system to be able to identify exactly the property which is relevant for the facet, one as
to specify explicitly this property in the facet model. The retained solution is to add a property
to the facet class: “directPropertySpecification”, which is used with the “exploit” property,
defining thus the exact path defining a facet: the facets values are linked to the facet’s
exploited class linked to the facet space domain class by the property specified in

 49

“directPropertySpecification”. It is to note that this solution is considered as temporary and
some redesign might still occur in the future to insure the genericity of the model.

New Facet model

Figure 5.8: The new facet model

5.2. Interface improvement
The interface improvement is a continuous process. Since its first presentation, and thanks to
the different remarks the developer’s team received on it, BayFac improves its interface to
become more and more practical to use.

The CoP mediator and some CoP members provided feedback on two main functionalities:
search and classification.

5.2.1 Classification evaluation

For the classification, no problems were found for the following functionalities:

�Add a new document
�Download a document
�Facets specification
�Document deletion
�Correction of a classification
�Add a choice in the facet

 50

The problems found (calendar closing, and update of items) in this classification part are
described below. For each problem, the correction or the solution for a future correction is
explained.

�In the date facet, the calendar does not close when clicking somewhere else; it needs the
user click on “close”. This problem comes from the CSS (Cascading Style Sheets) of the
calendar used. It is not a serious problem. It will be fixed for the next release.
�In the facet, it is possible now to insert a new item but it is still impossible to delete or
modify one of them without using Generis. To solve this, new buttons will be put next to
the “add item” button. When an item is selected, the user can click on the deletion button
or on the update button. For the update button, a popup in the same style as for the add
one, will be opened with the instance to modify. This functionality will be fixed for the
next release.

5.2.2 Search evaluation

For the search, three main problems were identified:

�In the key word search, BayFac was searching only in label and the description of the
document, not in the content and not in the facet specified. This is fixed now. The key
word search can find the entered word in the content, in the facets specified and of course
in the label and description.
�A green arrow was utilized before to display or not a facet in the search. Its utility was
not obvious and its functioning not perfect. As a solution, it as been deleted to alleviate the
interface.
�In the listing of resources matching with a search query, it will be useful to have link to
see the classification of each resource and another to a preview of the document instead of
having to download it to see what it is. These links will be provided in the next release.
�In the semantic browser, a button was inserted to return to the last search performed.
Indeed, the history of the browser is not of any help to go back to the search when using
the semantic browser, we just need a shortcut button to go back to the last search. This
shortcut has been added.

5.3. Bayesian Performance feedback and evaluation
Automatic classification will be based, in this case and for these facets, on Bayesian
techniques. Bayesian classifiers are used to provide automatic categorization. They learn first
from manual classification made by users, and then propose automatic categorizations of
documents in each facet once there is a sufficient amount of documents processed in a
supervised manner to enable correct predictions. The benefits for the users are to have new
documents automatically classified according to known useful categories.

In order to measure the Bayesian performance of BayFac, we have to have a feedback of the
proposed classification’s quality. Each facet according to which the document is classified is
managed by a single classifier. As a consequence, each classifier has to be evaluated
independently from the others. For that, two main steps are required. Firstly, the data
concerning the proposed classification’s quality must get back and then must be processed.

1. There are two ways to get information back. The first one is done without the user’s
knowledge and the second one requires his evaluation:

�When a classification is proposed by a Bayesian classifier (for one facet), the

 51

user must valid or not the proposition. If the user considers that the classification is
not appropriated for the facet in question, he can modify it. In this case, the
modification is recorded in a log file. There is one single log file for all classifiers.
�The second solution is to ask the user to evaluate the quality of the classification
done by the classifier. For instance, for the Form@HETICE CoP and for a facet
giving the classification of a document according to its content type, the classifier
proposes “pedagogical”. Users validate the classification proposition by changing
if it is necessary and by rating it. A mark from 0 (this is not the good classification)
to 3 (this is exactly the good classification) is. 1 stands for quite false classification
and 2 stands for a quite good classification but the proposition is even though
changed. In the same way, each rate of each classifier is recorded in a log file.
Now, the log file must be treated.

2. As there are two ways to feed Bayesian performance data back there are also two ways
to handle them:

�For the first manner, we have a log file with records of modification or not of the
classification when it is validated. In order to see the evolution of good
classifications for one classifier (related to its facet learning), we make a graph
with number of good classifications per 10 propositions. The chart shows thus the
learning speed of a classifier. The learning speed is not be related to time but to the
number of documents processed. The more a classifier process documents and
propositions are validated, the more it will learn and become efficient.
�The second manner adds to the learning speed, the quality of its learning.
Actually, instead of building a graph with the number of good classifications, we
use the average of 10 classification’s rates.

5.4. Interoperability

5.4.1 REST Web Services
REST is an approach for Web services development based on the basic Web principles. It is
meant to be more lightweight and coarser grained than SOAP Web services. As it is defined in
[Fielding, 2000] it cannot be considered as an architecture but as an architectural style, thus
we searched a mean to have a concrete set of guidelines to implement our RESTful Web
services. We have found ROA (Resource Oriented Architecture) as a well-defined set of best
practices for the design of RESTful Web services, described in [Richardson and Ruby, 2007].
We tried to follow these practices as strictly as possible in the implementation of our services,
and we used their methodology to turn our requirements into read/write resources (see
[Richardson and Ruby, 2007] pp 147-148).

The main functionalities we have implemented as RESTful services are the search and
classification features of BayFac. The first resources considered were thus, Document and
Facet. Then we added the Facet vector, as the expression of the classification of the document
relative to the facets. Subsequently we added all the resources on which depend these first
resources, like FacetSpace and FacetItem, which are described below. These RESTful Web
services are implemented in our current BayFac architecture as a new presentation tier, beside
our classic web presentation tier, because it was difficult to adapt our current framework,
based on MVC, which models web pages in terms of actions, with the REST approach, where
every resource must be named with a noun and not an action verb. This independence from
the legacy permitted us to better fit to the REST principles, and we checked all our resources

 52

to verify if they met safety14 and idempotence15 criteria on their supported methods.

Service description
The service described here constitutes the first version of the Web services provided by
BayFac. All this service resources together with possible actions on them are defined in
greater details in the Web service WADL, most notably the messages XML schema (See
Annex 1). We use hereafter the URI Template notation [Gregorio et al., 2007]. For example, if
we consider the following URI Template:
http://somehost/users/{user_id}
{user_id} is called a path variable and as such, if we set {user_id} to “john_doe”, the final
URI is:
http://somehost/users/john_doe

The following HTTP methods are used in the rest of this document in their common sense:

·GET: read the content of a resource (one of its representations)
·POST: create a resource (resource factory)
·PUT: update a resource
·DELETE : delete a resource

Moreover the HEAD and OPTIONS methods are supported:

·HEAD: GET returning only headers
·OPTIONS: list of supported methods on a given resource

The right management system implemented in BayFac is also supported through the Web
service interface. Clients are authenticated through the classical HTTP Basic Authentication
mechanism, by passing the credentials through HTTP headers in each request requiring it.
An alternative mean to pass the credentials in a request, is to embed them in the URI, for
example:
http://login:password@somehost/users/
Rights are managed at the resource and method level.

Error reporting is made through the standard HTTP mechanism, and status codes. As
described in the WADL file, each request can generate an error. In such a case, the HTTP
status code is set consequently in the response, accompanied by an XML message containing
the textual representation of the error in its body.
(For the complete list of HTTP/1.1 status codes, please see
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html)

5.4.1.1.Context
The fs resource handles facet spaces. It is the root of our web service, all other resources are
subordinate to this one. It is coherent with the BayFac model, since all operations are done in
the context of a facet space. Actually, fs corresponds to the domain property of the FacetSpace
class in the facet ontology and denotes the class of classified entities (or classification
subjects). The path variable {fs_id} of the fs resource allows to specify a specific facet space
(a particular instance). This resource is read-only.

14 GET and HEAD methods are safe, since they do not modify the dataset.
15 GET, HEAD, PUT, DELETE methods are idempotent, one ore more of these operations should give an

identical result.

 53

Resource Method Input Output

/fs GET / The list of facet
spaces

/fs/{fs_id} GET / A representation of
a facet space

5.4.1.2.BayFac Search
The search is done through the instance resource, which refers to the classification subjects of
a facet space. For example, if the facet space “Document” is defined on a Document class (i.e.
specifying that Document instances are the subjects of classification), the resource instance is
the list the instances of that Document class that are present in the system. Two query string
parameters are optional for the search:

·keywords: a list of comma separated keywords
Example: keywords=palette,project

·facet_items: a list of semicolon separated couples. Each couple is constituted of the id of
a facet and a value (it can be the id of a facet item, or a string). The two elements of the
couple are separated by a comma.

Example:
facet_items=i1239831232313,12/09/07;i34238942333900,i3129847384783

All id mentioned in the facet_items parameter can be found through the resources facet and
facet_item (see below).

Resource Method Input Output

/fs/{fs_id}/instance/ GET Query string parameters:

- keywords

- facet_items

List of instances
matching the search
criteria

/fs/{fs_id}/instance/{in
stance_id}

GET / The description of
an instance

5.4.1.3.BayFac Classification
In order to classify an instance, it must be added to the BayFac database. This can be done
with the POST method on the instance resource. It also supports methods PUT and DELETE
to respectively update and delete an instance. If the instance refers to an external document,
its URI has to be mentioned in the input message.

Facet descriptions can be read through the facet resource. If facets are constituted of discrete
elements, these ones are available through the facet_item resource for each facet.

The classification is made through the creation of a facet vector, associated to an instance.
The facet vector defines for a given instance a list of couples, each couple refers to a facet id
and a value (possibly a facet item).

 54

Resource Method Input Output

/fs/{fs_id}/instance/ POST A representation
of an instance

A validation or error message

/fs/{fs_id}/instance/{instance_id} PUT A representation
of an instance

A validation or error message

/fs/{fs_id}/instance/{instance_id} DELETE / A validation or error message

/fs/{fs_id}/facet/ GET / List of facets

/fs/{fs_id}/facet/{facet_id} GET / A representation of a facet

/fs/{fs_id}/facet/{facet_id}/facet_item/

GET / A list of facet items

/fs/{fs_id}/facet/{facet_id}/facet_item/{fac
et_item_id}

GET / A representation of a facet
item

/fs/{fs_id}/facet_vector/ GET / A list of facet vectors

/fs/{fs_id}/facet_vector/ POST A representation
of a facet vector

A validation or error message

/fs/{fs_id}/facet_vector/{facet_vector_id} PUT A representation
of a facet vector

A validation or error message

/fs/{fs_id}/facet_vector/{facet_vector_id} DELETE / A validation or error message

Remarks
The currently provided Web services permit to access the basic functionalities of BayFac,
namely search and classification. For the moment several resources are not available for write
operations; this will be possible after a homogenization with Generis Web services.
Moreover, it seems also complicated to describe in XML the data contained in a knowledge
base, because XML schema are not flexible enough. It could be interesting to study the
possibility to use semantic web technologies, for example by exchanging RDF messages and
by describing the service with WADL and RDF Schema. This would have the advantage that
the WADL file could be dynamically generated from the knowledge base.

5.4.2 Data import
This functionality comes from a Form@HETICE CoP’s request, which agreed to use BayFac
only with facilities to import its already existing documents in it (as it concerned nearly 200
documents).

 55

The first kind of import that will be available is import via RSS feeds. This is available for
documents in Form@HETICE.

In next versions of BayFac, other datasources than RSS feeds might be proposed, as for
example mail or forum. Datasources can be defined as kinds of elements to import (RSS,
mails, forums) containing several documents not always well structured.

Documents import from Form@HETICE
As mentioned previously, Form@HETICE documents import is realized via RSS feeds.
RSS (Really Simple Syndication or Rich Site Summary) is an XML Web Feed Format
allowing sharing content among different websites.

Example of RSS feed, used in the context of Form@HETICE:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- generator="FeedCreator 1.7.2" -->
<rss version="2.0">
<channel>
<title>Form@Hetice documents RSS Export</title>
<description>RSS export of Form@Hetice docu-
ments</description>
<link>http://www.stecrifa.ulg.ac.be/formahetice/ind ex.php?opt
ion=com_docman</link>
<lastBuildDate>Tue, 27 Nov 2007 10:49:44
+0100</lastBuildDate>
<generator>FeedCreator 1.7.2</generator>
<item>
<title>1 ecolEte intro</title>
<link>http://sim.tudor.lu/palette/FormaHetice/uploa ds/1_ecolE
te_intro.ppt</link>
<description>1 ecolEte intro</description>
<category> École d'été</category>
</item>
<item>
<title>Guide utilisation site</title>
<link>http://sim.tudor.lu/palette/FormaHetice/uploa ds/Guide_u
tilisation_site.pdf</link>
<description>Guide utilisation site</description>
<category>Guide utilisation</category>
</item>
</channel>
</rss>

 56

How does it work?
Two steps are necessary. The first step is done on Form@HETICE current website side: A
RSS feed is generated every night in Form@HETICE with the last documents added.

This RSS feed is calculated by querying the database in order to get for each of the last added
documents, their name, link, category, and description. Then the RSS feed is constructed, and
given back to the user as a result to his query. The RSS feed generated is compatible with the
RSS 2.0 standard and thus can be used in any current web aggregator.

The second step is the following. Every night, after the generation of the RSS feed, a batch in
BayFac interrogates it. The RSS is parsed in order to get information concerning each
document to import. For each of those documents, the following steps are realized:

1.The physical document is copied in BayFac
2.An instance of the document is created with the label (title), comment (description),
classification state (none at the moment), and the posted date (the date of creation in
BayFac)
3.The content of the document is parsed in order to generate keywords (the label and
comment are also parsed for keywords)
4.The physical link is added to the Document instance in BayFac.

The documents are then saved in BayFac, and corresponding keywords are added. Users can
then access to them for classification.

 57

Chapter 6 Conclusions

This deliverable detailed the new developments of SweetWiki (collaborative creation
services) and BayFac (document classification and search services) and presented two new
complex KM services: SemanticFAQ for semi-automatic annotation of a corpus of e-mails
and information retrieval from such e-mails and KM LinkWidget for linking resources and the
discussions.

SweetWiki, SemanticFAQ and BayFac have been implemented and tested by at least one
CoP: SweetWiki by several CoPs such as TFT CoP (see deliverables [D.KNO.04] and
[D.KNO.05]), Bayfac by Form@Hetice and Learn-Nett CoPs, SemanticFAQ by @pretic CoP.
Notice that this deliverable reports the results of @pretic CoP’s user-centered analysis on
SemanticFAQ portal and the suggestions of Form@Hetice CoP for BayFac. The KM Link
Widget has not yet been implemented but once implemented, it will also be tested by
Did@actic and Learn-Nett CoPs.

As further work, we will achieve the implementation of KM Link Widget and improve the
three other complex KM services, as indicated in the corresponding chapters: interface and
tagging capabilities for SweetWiki, semantic navigation and generation of answers to queries
about e-mails for SemanticFAQ, experimentations of BayFac with Form@Hetice and
LearnNett CoPs and study new services (knowledge evolution and knowledge evaluation
services).

A CoP-oriented evaluation of each of these complex KM services will be performed with at
least one CoP.

Last, we will study the interoperability of some KM services with information services (e.g
SweetWiki and Amaya) and collaboration services (e.g. SweetWiki and CopeIt!) or other
services (e.g. BayFac and CAKB, service browser, or value evaluation service).

 58

Bibliography

[Azouaou, 2006] Azouaou F.. Modèles et outils d'annotations didactiques collectives pour des
mémoires de formation. Thèse de l’université Joseph Fourier, 2006.
[Bastien and Scapin, 2001] Bastien, J. M. C., & Scapin, D. L., Évaluation des systèmes
d’information et Critères Ergonomiques. In C. Kolski (Ed.), Systèmes d’information et inte-
ractions homme-machine. Environnement évolués et évaluation de l’IHM. Interaction homme-
machine pour les SI (Vol. 2, pp. 53-79) Paris : Hermes.
[Bechhofer et al., 2003] Bechhofer S., Goble C., Carr L., Hall W., Kampa S., De Roure D.
COHSE: Conceptual Open Hypermedia Service. In Annotation for the Semantic Web, S
Handschuh and S. Staab (eds), IOS Press, Amsterdam 2003.
[Bloehdorn et al., 2005] Bloehdorn S., Petridis K., Saathoff C., Simou N., Tzouaras V.,
Avrithis Y, Handschuh S., Kompatsiaris Y., Staab S., Strintzis, M.G. Semantic Annotation of
Images and Videos for Multimedia Analysis, In Proceedings 2nd European Semantic Web
Conference (ESWC 2005), Heraklion, Greece, 29 May-1 June 2005.
[Black et al., 2005] Black W.J., McNaught J., Vasilakopoulos A., Zervanou K., Theodoulidis
B., Rinaldi F. CAFETIERE Conceptual Annotations for Facts, Events, Terms, Individual En-
tities, and Relations, Parmenides Technical Report TR-U4.3.1, 11 Jan, 2005.
[Cao et al., 2004] Cao, T.-D., Dieng-Kuntz, R., Fiès B. An Ontology-Guided Annotation Sys-
tem for Technology Monitoring, IADIS International WWW/Internet 2004 Conference, Ma-
drid, Spain, 6-9 October 2004.
[Chapman et al, 2004] Sam Chapman, Alexiei Dingli, Fabio Ciravegna: Armadillo: harvest-
ing information for the semantic web. SIGIR 2004: 598
[Cimiano et al., 2004] Cimiano P., Handschuh S., Staab S. (2004) Towards the self-
annotating web. In Proceedings 13th International World Wide Web Conference, (WWW
2004), May 17-22, 2004, New York, NY.
[Ciravegna et al., 2002] Ciravegna F., Dingli A., Petrelli D., Wilks Y. (2002) User-System
Cooperation in Document Annotation based on Information, In 13th International Conference
on Knowledge Engineering and Knowledge Management (EKAW02), 1-4 October 2002 –
Sigüenza, Spain.
[Ciravegna et al., 2003] Ciravegna F., Wilks Y. Designing Adaptive Information Extraction
for the Semantic Web in Amilcare, in S. Handschuh and S. Staab (eds), Annotation for the
Semantic Web, in the Series Frontiers in Artificial Intelligence and Applications, IOS Press,
Amsterdam, 2003.
[Corby and Faron, 2007] Corby O., Faron-Zucker C.. Implementation of SPARQL Query
Language based on Graph Homomorphism, In Proc. of the 15th International Conference on
Conceptual Structures (ICCS'2007), Sheffield, UK.
[Corby et al., 2004] Corby O., Dieng-Kuntz R. and Faron-Zucker C.. Querying the Semantic
Web with Corese Search Engine, in: Proc. of the 16th European Conference on Artificial In-
telligence (ECAI'2004), Prestigious Applications of Intelligent Systems, Valencia, Spain, de
Mantaras, Saitta (editors), August 22-27 2004, p. 705-709.
[D.IMP.04] Sire, S., Karacapilidis, N., Karousos, N., Gateau, B. , Naudet, Y., Vagner, A. ,
Watrinet, M.-L., Chiu Man Yu, M., Geneves, P.. Updated version of guidelines for develop-
ment - Towards a Palette Service Platform Architecture. Deliverable D.IMP.04, Palette FP6-
028038, November 2007.

 59

[D.KNO.02] Tifous, A., Dieng-Kuntz, R., Durville, P., El Ghali, A., Evangelou, C., Giboin,
A., and Vidou, G.., CoP-dependent ontologies. Deliverable D.KNO.02, Palette FP6-028038,
March 2007.
[D.KNO.03] El Ghali, A., Corby, O., Dehors, S., Dieng-Kuntz, R., Durville, P., Evangelou,
C., Gandon, F., Giboin, A., Latour, T., Plichart, P., Tifous, A., and Vidou, G. Specification of
the CoP-oriented Knowledge Management Tool offering basic CoP-adapted KM services. De-
liverable D.KNO.03, Palette FP6-028038, August 2006.
[D.KNO.04] El Ghali, A., Dieng-Kuntz, R., Giboin, A., Tifous, A., Gateau, B., Naudet, Y.,
Vagner, A., and Watrinet., M.-L., Basic CoP-oriented Knowledge Management Tool offering
basic CoP-adapted KM Services. Deliverable D.KNO.04, Palette FP6-028038, October 2007.
[D.KNO.05] Dieng-Kuntz, R., Denis, B., El Ghali, A., Gateau, B., Lebails, J.-D., Makni, B.,
Naudet, Y., Peeters, R., Rieppi, S., Tifous, A., Vandeput, E., and Vidou, G., Extensions of
OCoP Ontology. Deliverable D.KNO.05, Palette FP6-028038, January 2008.
[Dehors et al., 2005]Dehors, S., Faron-Zucker, C., Giboin, A., Stromboni, J.-P. (2005). Semi-
automated Semantic Annotation of Learning Resources by Identifying Layout Features, in:
Proceedings of AIED'2005 International Workshop on Applications of Semantic Web Tech-
nologies for E-Learning, Amsterdam, July 2005.
[Desmontils and Jacquin, 2002] Desmontils E. and Jacquin C.. Annotations sur le web : no-
tes de lecture. In Journées scientifiques de l’AS Web sémantique, CNRS, 2002.
[Durville and Gandon, 2007] P. Durville and F. Gandon. Sewese: Semantic web server. In
Proc. of WWW2007 Developers track, 2007.
[Dzbor et al., 2003] Dzbor, M., Domingue, J. & Motta, E. Magpie: Towards a semantic web
browser. Proceedings of the Second International Semantic Web Conference, Sanibel Island,
Florida, US, October.
 [Fielding, 2000] Fielding, Roy Thomas, Architectural Styles and the Design of Network-
Based Software Architectures, Doctoral dissertation, University of California, Irvine, 2000
(http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)
[Golebiowska et al., 2002] Golebiowska, J., Dieng-Kuntz, R., Corby, O., Mousseau, D.
Samovar: using ontologies and text-mining for building an automobile project memory, in
Knowledge Management and Organizational Memories, p89-102, Kluwer Academic Publish-
ers, Boston, 2002
[Gregorio et al., 2007] Gregorio, Hadley, Nottingham, Orchard, URI Template, IETF
Internet-Draft, v02, 2007
[Huynh et al. 2005] David Huynh, Stefano Mazzocchi, and David Karger. Piggy Bank: Ex-
perience the Semantic Web Inside Your Web Browser. International Semantic Web Confer-
ence (ISWC) 2005.
[Jongwan et al., 2007] Jongwan K., Dejing D., Haishan L. and Donghwi K. Constructing A
User Preference Ontology for Anti-spam Mail Systems. In Proc. the 20th Canadian Confer-
ence on Artificial Intelligence (Canadian AI'07). LNCS/LNAI 4509, pp. 272-283.
[Khelif et al., 2005] Khelif, K., Dieng-Kuntz, R., Barbry, P. Semantic web technologies for
interpreting DNA microarray analyses: the MEAT system, in: Proceedings of the 6th Interna-
tional Conference on Web Information Systems Engineering (WISE'05), New York, USA,
Springer, Lecture Notes in Computer Science, November 2005.
[Koivunen, 2005] Koivunen M-R., Annotea and Semantic Web Supported Collaboration, In-
vited talk at Workshop on User Aspects of the Semantic Web (UserSWeb), at European Se-
mantic Web Conference (ESWC 2005) Heraklion, Greece, 29 May 2005.
[Makni et al, 2007] Makni B., Khelif K., Dieng-Kuntz R. & Cherfi H., Création semi-
automatique d'une ontologie et des annotations sémantiques pour une liste de diffusion d'une
communauté de pratique, Atelier Ontologies et Textes associé à la 7ème conférence Termino-
logie et Intelligence Artificielle TIA'07, 8-10 Octobre, Sophia Antipolis, France.

 60

[Makni et al, 2008] Makni B., Khelif K., Dieng-Kuntz R. & Cherfi H., Utilisation du Web
Sémantique pour la gestion d'une liste de diffusion d'une CoP, 8èmes journées francophones
Extraction et Gestion des Connaissances, INRIA Sophia Antipolis Méditerranée, January 29 -
February 1st, 2008.
[McDowell et al., 2003] McDowell, L. Etzioni, O., Gribble, S.D., Halevy, A., Levy, H.,
Pentney, W., Verma, D., Vlasseva. S. Mangrove: Enticing Ordinary People onto the Semantic
Web via Instant Gratification In Proc. 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, USA, October 20-23, 2003.
 [Munzner and Burchard, 1995] Munzner, T. and Burchard, P. Visualizing the structure of
the World Wide Web in 3D hyperbolic space. In Proceedings of the First Symposium on Vir-
tual Reality Modeling Language (San Diego, California, United States, December 13 - 15,
1995). VRML '95. ACM, New York, NY, 33-38.
[Popov et al., 2003] Popov B., Kiryakov A., Ognyanoff D., Manov D., Kirilov A., and Go-
ranov M. Towards Semantic Web Information Extraction, In ISWC2003 Human Language
Technologies Workshop. 20 October 2003, Florida, USA.
[Popov et al., 2004] Popov B., Kiryakov A., Ognyanoff D., Manov D., Kirilov A., and Go-
ranov M.. Kim a semantic platform for information extraction retrieval. Nat. Lang. Eng.,
10(3-4) :375–392, 2004.
[Quint and Vatton, 1997] Quint V., Vatton I. An Introduction to Amaya, W3C NOTE 20-
February-1997, (http://www.w3.org/TR/NOTE-amaya-970220.html accessed on 28 July
2004)
 [Richardson and Ruby, 2007] Richardson, Leonard & Ruby, Sam, RESTful Web Services,
O’Reilly, 2007.
[Sakurai and Suyama, 2005] Sakurai S. and Suyama A.. An e-mail analysis method based
on text mining techniques. Appl. Soft Comput., 2005: 62-71
[Uren et al., 2005] Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegana, F. Semantic annotation for knowledge management: Requirements and a survey
of he state of the art. Journal of Web Semantics, n. 4:14-28, 2005.
[Vandeput and Ledent, 2007] Vandeput, E. and Ledent, M. Usability report: SweetWiki. In-
ternal report, Palette FP6-028038, June 2007.
[Vargas-Vera et al., 2002] Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A.
& Ciravegna, F. MnM: Ontology Driven Semi-Automatic and Automatic Support for Seman-
tic Markup. In Gómez-Pérez, A. & Benjamins, V. R. eds, Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web, Proc. of the 13th International
Conference, EKAW 2002, Sigüenza, Spain, October 1-4, LNAI 2473, p. 379-390.
[Zhong et al., 2002] Zhong, N., Matsunaga, T., and Liu, C.. A Text Mining Agents Based Ar-
chitecture for Personal E-mail Filtering and Management. In Proceedings of the Third inter-
national Conference on intelligent Data Engineering and Automated Learning (August 12 -
14, 2002). H. Yin, N. M. Allinson, R. Freeman, J. A. Keane, and S. J. Hubbard, Eds. Lecture
Notes In Computer Science, vol. 2412. Springer-Verlag, London, 329-336.

 61

Appendix A BayFac WADL

A.1. Main WADL file

<?xml version="1.0"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://research.sun.com/wadl/2006/10 wadl.xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:bay="bayfac"
 xmlns:bfs="bayfac:facet:show"
 xmlns:bfi="bayfac:facet:index"
 xmlns:bfis="bayfac:facetItem:show"
 xmlns:bfii="bayfac:facetItem:index"
 xmlns:bfvs="bayfac:facetVector:show"
 xmlns:bfvi="bayfac:facetVector:index"
 xmlns:bfvc="bayfac:facetVector:create"
 xmlns:bfvu="bayfac:facetVector:update"
 xmlns:bfss="bayfac:fs:show"
 xmlns:bfsi="bayfac:fs:index"
 xmlns:bis="bayfac:instance:show"
 xmlns:bii="bayfac:instance:index"
 xmlns:bic="bayfac:instance:create"
 xmlns:biu="bayfac:instance:update"
 xmlns="http://research.sun.com/wadl/2006/10">
 <grammars>
 <include href="defaultMessage.xsd"/>
 <include href="facet/show.xsd"/>
 <include href="facet/index.xsd"/>
 <include href="facetItem/show.xsd"/>
 <include href="facetItem/index.xsd"/>
 <include href="facetVector/show.xsd"/>
 <include href="facetVector/index.xsd"/>
 <include href="facetVector/create.xsd"/>
 <include href="facetVector/update.xsd"/>
 <include href="fs/show.xsd"/>
 <include href="fs/index.xsd"/>
 <include href="instance/show.xsd"/>
 <include href="instance/index.xsd"/>
 <include href="facetVector/create.xsd"/>
 <include href="facetVector/update.xsd"/>
 </grammars>
 <resources base="http://sim.tudor.lu/exampleBayFac/index.php/rest/">
 <resource path="fs">
 <method name="GET" id="fs_index">
 <request/>
 <response>
 <representation status="200" mediaType="application/xml"
element="bfsi:fsIndex"/>
 <fault status="400 401 404 405 409 500 503" me-
diaType="application/xml"
 element="bay:message"/>
 </response>
 </method>
 <resource path="{fs_id}">
 <param name="{fs_id}" style="template" type="xsd:string"/>
 <method name="GET" id="fs_show">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml" element="bfss:fs"/>
 <fault status="400 401 404 405 409 500 503" me-
diaType="application/xml"
 element="bay:message"/>
 </response>
 </method>
 <resource path="instance">
 <method name="GET" id="instance_search">
 <request>
 <param name="keywords" style="query"
type="xsd:string"/>
 <param name="facet_items" style="query"
type="xsd:string"/>
 </request>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bii:instances"/>
 <fault status="400 401 404 405 409 500
503" mediaType="application/xml"

 62

 element="bay:message"/>
 </response>
 </method>
 <method name="POST" id="instance_create">
 <request>
 <representation me-
diaType="application/xml" element="bic:instance"/>
 </request>
 <response>
 <representation status="201" me-
diaType="application/xml"
 element="bay:message"/>
 <fault status="400 401 404 405 409 500
503" mediaType="application/xml"
 element="bay:message"/>
 </response>
 </method>
 <resource path="{instance_id}">
 <param name="{instance_id}" style="template"
type="xsd:string"/>
 <method name="GET" id="instance_show">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bis:instance"/>
 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>
 <method name="PUT" id="instance_update">
 <request>
 representation me-
diaType="application/xml" element="biu:instance"/>
 </request>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bay:message"/>
 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>
 <method name="DELETE" id="instance_delete">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bay:message"/>
 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>

 </resource>
 </resource>
 <resource path="facet">
 <method name="GET" id="facet_index">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bfi:facets"/>
 <fault status="400 401 404 405 409 500
503" mediaType="application/xml"
 element="bay:message"/>
 </response>
 </method>
 <resource path="{facet_id}">
 <param name="{facet_id}" style="template"
type="xsd:string"/>
 <method name="GET" id="facet_show">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bfs:facet"/>

 63

 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>
 <resource path="facet_item">
 <method name="GET" id="facetItem_index">
 <request/>
 <response>
 <representation
status="200" mediaType="application/xml"
 ele-
ment="bfii:facetItems"/>
 <fault status="400 401 404
405 409 500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>
 <resource path="{facetItem_id}">
 <param name="{facetItem_id}"
style="template" type="xsd:string"/>
 <method name="GET"
id="facetItem_show">
 <request/>
 <response>
 <representation
status="200" mediaType="application/xml"
 ele-
ment="bfis:facetItem"/>
 <fault status="400
401 404 405 409 500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>
 </resource>
 </resource>
 </resource>
 </resource>
 <resource path="facet_vector">
 <method name="GET" id="facetVector_index">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bfvi:facetVectors"/>
 <fault status="400 401 404 405 409 500
503" mediaType="application/xml"
 element="bay:message"/>
 </response>
 </method>
 <method name="POST" id="facetVector_create">
 <request>
 <representation me-
diaType="application/xml" element="bfvc:instance"/>
 </request>
 <response>
 <representation status="201" me-
diaType="application/xml"
 element="bay:message"/>
 <fault status="400 401 404 405 409 500
503" mediaType="application/xml"
 element="bay:message"/>
 </response>
 </method>
 <resource path="{facetVector_id}">
 <param name="{facetVector_id}" style="template"
type="xsd:string"/>
 <method name="GET" id="facetVector_show">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 ele-
ment="bfvs:facetVector"/>
 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>

 64

 <method name="PUT" id="facetVector_update">
 <request>
 <representation me-
diaType="application/xml" element="bfvu:instance"/>
 </request>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bay:message"/>
 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>
 <method name="DELETE" id="facetVector_delete">
 <request/>
 <response>
 <representation status="200" me-
diaType="application/xml"
 element="bay:message"/>
 <fault status="400 401 404 405 409
500 503"
 me-
diaType="application/xml" element="bay:message"/>
 </response>
 </method>

 </resource>
 </resource>
 </resource>
 </resource>
 </resources>
</application>

A.2. defaultMessage.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="bayfac"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="message">
 <xs:complexType>
 <xs:all>
 <xs:element name="code" type="xs:string"/>
 <xs:element name="content" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.3. facet/index.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facet:index"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facets">
 <xs:complexType>
 <xs:all>
 <xs:element name="facet" type="xs:anyURI" minOccurs="0" maxOc-
curs="unbounded"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

 65

A.4. facet/show.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facet:show"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facet">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="exploit" type="xs:string"/>
 <xs:element name="facetItems" type="xs:anyURI" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.5. facetItem/index.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facetItem:index"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facetItems">
 <xs:complexType>
 <xs:all>
 <xs:element name="facetItem" type="xs:anyURI" minOccurs="0" maxOc-
curs="unbounded"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.6. facetItem/show.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facetItem:show"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facetItem">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.7. facetVector/create.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facetVector:create"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facetVector">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOc-
curs="0"/>
 <xs:element name="instance" type="xs:anyURI"/>
 <xs:element name="vector">
 <xs:complexType>
 <xs:all>

 66

 <xs:element name="facetVectorItem"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:all>
 <xs:element
name="facet" type="xs:anyURI"/>
 <xs:element
name="facetItem" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.8. facetVector/index.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facetVector:index"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facetVectors">
 <xs:complexType>
 <xs:all>
 <xs:element name="facetVector" type="xs:anyURI" minOccurs="0" maxOc-
curs="unbounded"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.9. facetVector/show.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facetVector:show"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facetVector">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOc-
curs="0"/>
 <xs:element name="instance" type="xs:anyURI"/>
 <xs:element name="vector">
 <xs:complexType>
 <xs:all>
 <xs:element name="facetVectorItem"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:all>
 <xs:element
name="facet" type="xs:anyURI"/>
 <xs:element
name="facetItem" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

 67

A.10. facetVector/update.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:facetVector:update"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="facetVector">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOc-
curs="0"/>
 <xs:element name="instance" type="xs:anyURI"/>
 <xs:element name="vector">
 <xs:complexType>
 <xs:all>
 <xs:element name="facetVectorItem"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:all>
 <xs:element
name="facet" type="xs:anyURI"/>
 <xs:element
name="facetItem" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.11. fs/index.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:fs:index"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="fsIndex">
 <xs:complexType>
 <xs:all>
 <xs:element name="fs" type="xs:anyURI" minOccurs="0" maxOc-
curs="unbounded"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.12. fs/show.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:fs:show"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="fs">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="instances" type="xs:anyURI"/>
 <xs:element name="facets" type="xs:anyURI"/>
 <xs:element name="facetVectors" type="xs:anyURI"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

 68

A.13. instance/create.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:instance:create"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="instance">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="hasURI" type="xs:anyURI" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.14. instance/index.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:instance:index"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="instances">
 <xs:complexType>
 <xs:all>
 <xs:element name="instance" type="xs:anyURI" minOccurs="0" maxOc-
curs="unbounded"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.15. instance/show.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:instance:show"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="instance">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="postDate" type="xs:date" minOccurs="0"/>
 <xs:element name="hasPath" type="xs:string" minOccurs="0"/>
 <xs:element name="hasURI" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="classificationState" type="xs:string"/>
 <xs:element name="facetVector" type="xs:anyURI" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

A.16. instance/update.xsd
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" targetName-
space="bayfac:instance:show"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="instance">
 <xs:complexType>
 <xs:all>
 <xs:element name="label" type="xs:string"/>
 <xs:element name="comment" type="xs:string" minOccurs="0"/>
 <xs:element name="hasURI" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="classificationState" type="xs:string"/>
 <xs:element name="facetVector" type="xs:anyURI" minOccurs="0"/>
 </xs:all>
 </xs:complexType>

 69

 </xs:element>
</xs:schema>

