

Project no. FP6-028038

Palette

Pedagogically sustained Adaptive LEarning Through the exploitation of Tacit and
Explicit knowledge

Instrument: Integrated Project

Thematic Priority: Technology-enhanced learning

D.INF.06 – Template-Driven Transformations

Due date of deliverable: 31 Mars 2008
Actual submission date: 28 April 2008

Start date of project: 1 February 2006 Duration: 36 months

Organisation name of lead contractor for this deliverable: UNIFR

Project co-funded by the European Commission within the Sixth Framework Programme

Dissemination Level

R Public PU

Keyword List: document engineering, structured document, template evolution, transformation
collaborative editing
Responsible Partner: Aida Boukottaya, UNIFR

MODIFICATION CONTROL

Version Date Status Modifications made by
1 22/02/2008 Draft Aida Boukottaya
2 25/03/2008 Draft Aida Boukottaya

Micael Paquier
3 01/04/2008 Draft (sent to

evaluators)
 Aida Boukottaya

4 15/04/2008 Evaluation Stéphane Sire, EPFL Annick Rossier,
UNIFR , Vincent Quint, INRIA

5 18/04/2008 Final Aida Boukottaya

Deliverable manager

 Aida Boukottaya, UNIFR

List of Contributors

 Aida Boukottaya, UNIFR
 Micael Paquier, EPFL

List of Evaluators

 Stéphane Sire, EPFL
 Annick Rossier, UNIFR
 Vincent Quint, INRIA

Summary:

In this deliverable we investigate the problem of XTiger templates evolution. We first discuss the
different kinds of changes that may be needed to evolve a template based on motivating examples.
Starting from a set of template modification primitives, we show how the new template is valid
(according to the XTiger language), and how all existing instances could be transformed to conform to
the modified template. Finally, we describe the current prototype user interface.

FP6-028038

Palette D.INF.06 3 of 21

1 Introduction ... 4
1.1 Motivating Examples of Template evolution .. 4
1.2 System requirements ... 5
1.3 Related work .. 6
1.4 Outline ... 7

2 Taxonomy and Semantics of Evolution Primitives .. 7
2.1 XTiger template representation ... 7
2.2 Evolution primitives: ... 9

2.2.1 Types change primitives .. 9
2.2.2 Elements change primitives ... 11
2.2.3 Making the motivating template example evolve: .. 11

2.3 High level evolution primitives: .. 12

3 Impact on validity and transformation generation .. 13

4 Template evolution prototype user interface ... 14
4.1 The overview Window: ... 14
4.2 Evolve a template .. 15
4.3 Transform instances .. 16

5 Conclusions and future work ... 17

6 Bibliography: ... 17

7 Appendices ... 18
7.1 The XTiger code of the motivating example ... 18
7.2 Primitives application Results ... 20

FP6-028038

Palette D.INF.06 4 of 21

1 Introduction
In the context of WP2, XTiger templates have been introduced in Amaya to allow CoP members to
specify the type of documents they want to produce [D.INF.01]. A template defines for example which
elements are permissible in a document, the order in which such elements must appear and how they
are nested to form a hierarchical structure. In a community of practice context, templates continuously
evolve to reflect a change in the practices, to adhere to new users’ requirements, to correct initial
design errors, to allow expansion of the template scope over time or to simply allow for incremental
maintenance. However, templates updates have a major consequence: documents being valid for the
original template are no more guaranteed to meet the constraints described by the evolved template.
These documents should be adapted, restructured and revalidated against the new template.
The manual restructuring and validation is difficult, time consuming (especially when it concerns a
large number of documents), and requires generally specific skills. Moreover, the observation of CoP
members performing manual adaptation shows that this operation frequently results in introducing
errors and inconsistencies. Thus, approaches for automatically adapting documents to the new
template are needed to maintain documents validity. The validity is a crucial issue since the template
is often relevantly exploited in several applications such as querying, transforming and document
retrieval.

In this deliverable, we address the problem of XTiger templates evolution. We first present a set of
atomic evolution primitives to be applied to the basic components of a template. We show that the
proposed primitives preserve the consistency of the template (i.e. ensured to transform a consistent
template into a consistent template according to the XTiger specifications1). These primitives are made
available to the user through a graphical interface that we are currently finalizing. Moreover, we
propose high level primitives in order to express more complex updates. A high level primitive is
represented as a sequence of atomic primitives that can be executed as a single operation. These
primitives have been introduced to facilitate the template evolution task for CoP members and to
describe more common sequence of atomic primitives. Finally, we show how we produce
automatically valid instances against the evolved template.

The major goal of the proposed approach is to make the task of template evolution easy for CoP
members. This is done by (1) enable them to perform evolution operations without knowing the
XTiger syntax and (2) ensure the validity of documents in an automatic manner.

1.1 Motivating Examples of Template evolution
Here we present motivating examples that show how changes in templates lead to various data
management issues that must be addressed. The example has been the basis of the discussion with
Did@ctic CoP members. Figure 1 depicts an example2 of a template that describes the bibliography
used by a CoP group in order to support their activities. Three categories of bibliographic references
are described: Articles, Journals, and Books.

Example 1: Let us consider the template change where the definition of the element “Journal”, which
must have an “editor” subelement, is relaxed such that it is optional to have the editor subelement. For
such template change, we would need to verify that (1) the suggested change leads to a new legal
template conforming to the XTiger specifications and (2) the corresponding changes are propagated to
the existing instances to conform the new template definition. A single occurrence of the “editor”
subelement in the instances would still conform to the new template where this subelement is optional.
Therefore this template modification requires no changes to the underlying instances.

1 http://www.w3.org/Amaya/Templates/XTiger-spec.html
2 The sample template is used as a running example in the remainder of this deliverable. Its XTiger description is
described in the appendices.

FP6-028038

Palette D.INF.06 5 of 21

Example 2: Let us now consider another template change where the definition of an author name is
split into two subelements First Name and Last Name. Performing the suggested change leads to the
invalidity of the related instances. To remain valid according to the new template, each author name
instance (in each article and each book) should be removed and two subelements First Name and Last
Name should be created, paying attention to keeping their content corresponding to the original author
name. Manually modifying the instances will be time consuming. Moreover, if the user is not familiar
with the XTiger language (which is the case of the majority of CoP members) the task will be
infeasible.

Example 3: Let us consider another template change where the bibliographic references should be
reordered. For examples, books should appear before articles. Such change seems very easy, however
this alter the instances validity. The information should be reordered in all available instances. Manual
execution is also in this case time consuming and error prone.

Example 4: After the use of the template and its related instances, the CoP group notices that it is
easier and more practical for them to classify articles and books by authors rather than by categories.
This change is complex to perform: (1) in term of modifications to the template code and (2)
modifications of the available instances to adapt them (this requires the complete restructuring of each
instance, the elimination of duplicates (each author must appear only once)) which is again a time
consuming process. This kind of change is not elementary (involves a lot of operations and
modifications). It is equivalent to the creation of another template (where publications are classified by
author) and the use of the automatic matching module to perform the transformation (see the example
called library available at http://docreuse.epfl.ch:8443/). However, this kind of high level3 evolution
primitives should also be introduced in the Template evolution prototype to answer specific CoP needs
and avoid the execution of a lot of evolution primitives. More examples of high level evolution
primitives will be given in section 2.3.

1.2 System requirements
As we can notice, the manual update of a template and the revalidation of the related instances require
a lot of effort and thus is unacceptable for applications and environments where the information
sources frequently change. Based on the previous examples as well as discussions with CoP members
(Did@ctic), we deduce a set of requirements summarized in the following:

- The system should propose a taxonomy of atomic template evolution primitives that provides
a system independent way to specify changes to XTiger templates and answer CoP members’
need,

- The proposed evolution primitives should be easy to extend. High level primitives could be
defined in order to answer specific CoP needs,

- Two forms of system integrity should be ensured during the evolution process: legal templates
(respecting XTiger specifications) and valid instances.

- The proposed prototype should provide a user interface enabling CoP members performing
template evolution. XTiger code changes as well as transformation scripts should be
transparent and automatically done,

- An efficient memory of templates evolution should be built in order to keep track of the
evolution process and to enable CoP members to perform transformation whenever they need,

- The developed prototype should be compatible with other DocReuse modules (same search
facilities, same repository, etc.,) and other PALETTE services (according to the scenarios of
WP5 task 4).

3 A High level evolution primitive is the execution of a sequence of atomic primitives in a single update in order
to express in a more compact way common evolution need of a CoP.

FP6-028038

Palette D.INF.06 6 of 21

Since an XTiger template is a combination of structural information (expressed using the XTiger
statements) and target language elements (XHTML), the evolution prototype essentially deals with
structural evolution and not with rendering issues.

1.3 Related work
The need for schema evolution is not a new problem and much effort has been done toward
automating such process. Many traditional database projects [Bretl 89], [Zicari 91], [Lerner 96],
[Claypool 98] have focused on the schema evolution issues, where the main goal is to develop
mechanisms to change not only the schema but also the underlying objects.
More recently, several works have been dedicated to XML structure/data evolution. XML schema
evolution has been investigated for schemas expressed by DTDs in [Kramer 01], where a set of DTDs
evolution operations have been proposed and their semantics have been discussed in detail. Issues
related to the impact of such operations on existing instances have not been addressed; more focus has
been given to prove the completeness and the soundness of the proposed change taxonomy. DTD
evolution has also been investigated in [Bertino 02] where authors focus on the dynamic adaptation of

Figure 1: A motivating example of a template

FP6-028038

Palette D.INF.06 7 of 21

DTDs based on the structure of most existing instances. This is done using structure mining
techniques.
More recent work focused on the evolution of XML schemas4. Authors in [Guerrini 06] proposed a set
of evolution primitives dealing with more specific XML schema features (Typing, Type
restriction/extension, etc.). Moreover, authors investigate how to minimize instances revalidation, that
is, detecting the document parts potentially invalidated by the schema changes that should be
revalidated. The idea to provide high level primitives is also exposed but no explicit high level
primitives are given. The problem of instances revalidation has been investigated in [Raghavachari
04]. In our work, we adopt the same model as in [Guerrini 06] in order to represent XTiger statements
and provide a theoretical way to describe evolution primitives. However, the latter model as well as
the evolution primitives have been modified in order to fit the specification of XTiger. In addition to
this, the proposed primitives have been negotiated with CoP members to answer their specific needs.
Authors in [Guerrini 06] focus on detecting the document parts potentially invalidated by the schema
changes. Revalidation and transformation issues are not addressed. In our work, automatic
transformation generation is of major concern. The basic idea is to keep track of the updates made to
the template in a mapping file, and to identify the portions of the template that require a revalidation
because of these updates. From the mapping file, a transformation script is generated automatically
and the document portions affected by those updates can then be identified and adapted in an
automatic manner. For this, we reuse and adapt our work on schema matching and automatic
transformation generation as described in D.INF.01 and demonstrated at http://docreuse.epfl.ch:8443/.

1.4 Outline
The remainder of this paper proceeds as follows. Section 2 provides taxonomy and semantics of
proposed evolution primitives. In Section 3, we study the impact of such primitives on the validity and
we expose techniques used to generate transformation scripts. Section 4 reviews our prototype user
interface. In Section 5 we present our conclusions and future directions.

2 Taxonomy and Semantics of Evolution Primitives
2.1 XTiger template representation
By analogy to XML schema language and programming language, we distinguish between types and
elements. Elements represent the content (what the end-user sees in the instances). Types are used to
define the structure and the constraints of these elements. In order to represent the XTiger templates,
we adapt the XML Schema model proposed by authors in [Guerrini 06].
Like in a schema language, types in XTiger are used to define pieces of structure that may occur at
several places in a template or in several templates. Several types are available: basic types, union
types and components. XTiger offers three basic types (number, boolean, and string). XTiger’s
xt:component is a constructor that creates a new type (a component5) containing other constructors
both from the XTiger language and from the target language. XTiger also offers the possibility to
define a new type (a union type) as the union of other types using the xt:union constructor.
Moreover, a template contains the skeleton of a target language document and some XTiger statements
that are used to generate instances. The latter (skeleton and statements) is called the template body.
Elements belong to the template body and represent the content that may appear in a given instance.
Each element (represented by XTiger statements) is associated to a type. Such type is either explicitly
named (can be re-used in the definition of other types/elements by referencing to its name) or
embedded in the element description (this notion is equivalent to the notion of anonymous types in
XML schemas). Type declaration (component and union) in XTiger is global (meaning that once a
type is declared, its name is unique and can be used wherever in the template). Elements are local in
the sense that they are meaningful in their structural context (e.g. the element Title is local to the
definition of a book or an article).

4 W3C XML schema. Specification available at http://www.w3.org/XML/Schema
5 This notion is similar to Complex Types in XML Schema

FP6-028038

Palette D.INF.06 8 of 21

Table 1 presents the representation of the template described in section 1.1. An example6 of element is
Article which is the element that represents the structure of an article. Element Article is composed of
several other elements; this composition is described within the type Article-Type.
The notion of typing in XTiger has been discussed with CoP members. They advocate the use of
explicit typing to enhance their reuse (this is done in the XTiger syntax by the declaration of
components in the Head element and their latter instantiation using the xt:use constructor). However,
since CoP members are not familiar with XTiger language, the typing is completely transparent for
them and presented in a graphical manner through the rectangle metaphor as in Amaya and DocReuse
modules (see examples of templates at http://www.w3.org/Amaya/Templates/Overview.html).
The template evolution prototype processes the templates in order to make the notion of typing
explicit to end-users. In case of inline declaration from the original template, the system will create
types in the Head to enable their reuse when they evolve.

Elements Types Details
University-
name

String

Address String
Articles

(Anonymous type)

Article →
Article-Type

Journals

(Anonymous type)

Journal →
Journal-Type

Books

(Anonymous type)

Book → Book-
Type

Article

Title → String
Author →
Author-Type

Journal

Name → String
Editor →
String

Book

Title → String
Price → Number
Publisher →
String
Author →
Author-Type

Author Name → String
Address →
Address-Type

Address City → String
State → String
Zip → Number

6 Elements and types in our motivating example have the same name for the clarity of the example.

Table 1: XTiger template representation

FP6-028038

Palette D.INF.06 9 of 21

2.2 Atomic evolution primitives:
As in [Guerrini 06], we consider three categories of atomic evolution primitives: insertion,
modification, and deletion. These primitives are applied to types and elements (as defined in the
previous section). Moreover, modifications can be further classified in three sub-categories: structural,
re-labelling, and migration modifications. Structural modifications allow to modify the type of an
element and its constraints (e.g,. cardinality constraints). Re-labelling modifications allow to change
the name of an element/type. Migration modifications cover two cases, first moving a subelement
from an element to another one and second transforming a local type/element to a global type/element
(and viceversa). Since all types are global and elements are local, we limit ourselves to the first case.
Table 2 reports the evolution primitives relying on the proposed classification. In what follows, we
discuss in more details each primitive. In order to ensure that the modified template remains well-
formed and valid according to the XTiger specifications, applicability conditions are enforced on each
primitive.

 Insertion Modification Deletion

Types Insert-Component
Insert-UnionType
Duplicate-Type

Insert-Subelement
Rename-Subelement
Change-SubelementType
Change-
SubelementCardinality
Change-Subelement-
position
Remove-Subelement
Modify-UnionType
Rename-Type

Remove-Type

Element Insert-Element
Duplicate-Element

Rename-Element
Change-Type
Change-Cardinality

Remove-Element

2.2.1 Types change primitives

The next three primitives involves types and do not require existing instances to be updated, because
they just declare new types but do not change anything that was already in the template. These
primitives are examples of validity preserving primitives as described in section 3.

Insert-Component
The primitive can be applied provided that type name uniqueness is not violated. Moreover, the
primitive takes as a parameter a component type structure: a set of subelements and the relationship
among subelements and their type (either a basic type or a type already defined in the template or a
target language type).

Insert-UnionType
The primitive can be applied provided that type name uniqueness is not violated. Moreover, the
primitive takes as a parameter the type definition of a union type i.e,. several types, each of which
being a basic type, a target language type, or a constructed type (component or other union). All the
member type names in the list should be distinct and already declared before.

Duplicate-Type
This primitive can be applied for the duplication of a given type (union or component). It takes as
parameter the name of the type to duplicate and generates a new type having the same type definition
but a new name (in order to respect the type name uniqueness condition). This primitive is used in the
case where a type already used in the declaration of given elements should be slightly modified for

Table 2: Classification of template evolution primitives

FP6-028038

Palette D.INF.06 10 of 21

another element. The primitive is applied provided that the original type is already defined. This
notion is useful since type inheritance is not considered in the XTiger language.

The following primitives concern the modification of a given type. Users must be aware that
modifying a type will modify the content of all elements using this type. For a component, we could
modify its structure by inserting a new subelement, changing the position of existing subelements,
changing the cardinality of its sub-elements, rename its sub-elements, and changing their types.
Modifying a union type meaning either inserting or removing the union members. Renaming a type
and removing a type are applied to both components and unions. Specific primitives for manipulating
a subelement in a given component are provided. These primitives share the same semantics as
primitives for manipulating elements in the template body (section 2.2.2). However, we prefer to
differentiate them since the end-user could define a type independently of the fact that elements using
this type exist or not in the body. Moreover, this choice eliminates any ambiguity for the end-users.

Insert-Subelement
A subelement insertion allows extending the information of a given structure type definition. The
primitive takes as parameters the name of the subelement to be inserted and its type (that must be a
type already defined in the template, a basic type or a target language type), and the position at which
the subelement must be inserted in the type structure. The type to which the subelement is added must
be an XTiger component and must not contain subelements with the same name.

Change-Subelement-position
This primitive changes the position of a subelement in a component declaration. The component as
well as the subelement must be already defined. The primitive takes as parameter the subelement and
its new position.

Rename-Subelement
This primitive renames a given subelement in a component declaration. The element as well as the
component must already be defined.

Change-Subelement-Type
This primitive changes the subelement type in a given component declaration unless the type is
already defined or is a basic type or a type from the target language.

Change-SubelementCardinality
In the XTiger language, cardinality constraints are described in different manner:

• Using the repeat constructor both on elements and on components (to generate a repeated
structure). In this case, this primitive takes as parameter the element or the structure that we
want to make repeatable (these elements and structures must be already defined) as well as
the minOccurs (minimum number of times the component must be repeated. If this attribute is
absent, the minimum is 0) and the maxOccurs (maximum number of times the component
may be repeated. If this is absent, it means that no upper bound is considered).

• Using the optional constructor. This is equivalent to an xt:repeat with maxOccurs="1"
and minOccurs="0".

This primitive is applied on subelements of a given component. It takes as parameter the subelement
to make repeatable or optional as well as minOccurs and maxOccurs values. The subelement and the
component must be already defined. Existing cardinality constraints could also be modified and/or
removed using this primitive.

Remove-Subelement
The remove-subelement operation removes a sub-element from a component. The removal implies
that the sub-element will be removed from all the other elements having this component as type.

FP6-028038

Palette D.INF.06 11 of 21

Modify-UnionType
For union types there are two kinds of modification: insertion of a member type, removal of a member
type. In the case of a removal, the position of the member type to be eliminated or its name must be
specified.

Rename-Type
This primitive renames a given type (component or union). The type must already be defined and there
must not be any other type with the new proposed name.

Remove-Type
This primitive is applied for the deletion of both union types and components. The primitive can be
applied provided that no elements exist of the type to be deleted.

2.2.2 Elements change primitives
These primitives are applied to elements (in the template body) meaning to the content of instances.

Insert-Element
The primitive takes as parameters the name of the element to be inserted, its position and its type (that
must be already defined or be a basic type or a target language type).

Change-Cardinality
This primitive takes as parameter the element to be made repeatable or optional. The element must be
already defined. Existing cardinality constraints can also be modified and/or removed using this
primitive.

Change-Element-position
This primitive changes the position of an element in the body of a template. The element must be
already defined.

Rename-Element
This primitive renames a given element. The element must already be defined.

Change-Element-Type
changes the element type unless the type is already defined or is a basic type or a type from the target
language.

Remove-Element
The remove element operation aremoves an element.

Duplicate-Element
This primitive creates another element which is the copy of the original element.

Insert-freeContentArea
The xt: use element puts strong constraints on the structure and/or content of a part of a document. It is
sometimes useful to have more flexibility. That is the role of the bag element. It indicates that any
number of elements may appear at that position in an instance document, and it specifies the allowed
types for these elements. This primitive inserts a bag element, as well as bag content (if any) should
be precised.

2.2.3 Making the motivating template example evolve
Let us consider the template in figure 1. Suppose that we want to make the template evolve in the
following way: Element “address” becomes optional. A new element “affiliation” of type string is
added to “Author-Type”. The “price” of a book is deleted. Element “Author” is made repeatable for an

FP6-028038

Palette D.INF.06 12 of 21

article to cover the case where a given article is written by more than one author. To make these
changes, we use the following primitives:

• The Change-Cardinality primitive applied to the element address,

• In order to insert the affiliation information related to a given author, we need to modify the
Author structure type definition described through “Author-Type” component. The Insert-
Subelement primitive is thus applied to Author-Type. The modification will also affect the
authors of books since they share the same type,

• Since “price” is declared in the definition of the component “Book-Type”, the Remove-
Subelement primitive is applied to the subelement “price” of the component “Book-Type”,

• In order to make the authors repeatable in the article element, the Change-
SubelementCardinality should be applied to the subelement “Author” in the “Article-Type”.

The code of the template is then modified as detailed in appendix B.
It is important to say that the application of these primitives and the code generated are completely
transparent to the end-user who will manipulate the elements/types through a graphical user interface
as explained in section 4. The XTiger code is generated automatically by the system. In fact, for each
primitive change, an XTiger code is predefined and automatically written to generate the modified
template. Since this is done by the system, it is done in such a way to always ensure the consistency of
the produced code with the XTiger specifications.

2.3 High level evolution primitives
Primitives mentioned in the previous section can be composed in high level primitives in order to
express more complex updates. Their applications allow to perform sequences of atomic primitives as
a single update. These higher-level primitives have been introduced to facilitate the template evolution
task for CoP members. In fact, they allow to group and reuse a set of common manipulations. From
the discussions with Did@ctic CoP members and from an analysis of their templates, we define a set
of high level primitives to be implemented. The set is not definitive and will be extended/restricted
through the trials made within the CoPs in the context of scenarios implementation:

• Aggregator primitives: they mainly include primitives for inserting, moving, changing whole
substructures rather than a single element at a time.

• Component creation from existing elements in the body template: this is useful when the user
defines a set of elements and then decides to create a type and to reuse this structure
definition. It will be possible to select these elements and to create a new component rather
than defining components from scratch.

• Merge/split primitives: Elements values are not always represented at the same level of
atomicity. For example the author name in the template of figure 1 is represented using an
element of type string. However, for a given reason a new design choice could be to separate
the author name into a First-Name and a Last-name. Another example could be the address
description. While in one template the address is separated in Street, City and Zip values, they
are concatenated together in an Address element in another template. For such cases, instead
of removing the elements and inserting new ones without any guarantee that the content will
be preserved, we define two operations Merge and Split to perform this task and ensure that
the content will be preserved.

• Group by primitive: We noticed that sometimes the content of a template may need to be
restructured according to a certain classification. A Group By primitive (similar to the Group

FP6-028038

Palette D.INF.06 13 of 21

By statement in query languages) is then introduced. This primitive answers the example 4
from the motivating examples of section 1.1.

3 Impact on validity and transformation generation
When a given template evolves, documents are no longer ensured to be valid for the new template and,
as explained in the introduction should be revalidated in order to meet the new constraints. However,
taking into account that updates usually affect only few template elements/types and thus not
necessarily compromise the whole document validity, the revalidation of the whole instance is not
necessary. As explained in [Guerrini 06] validity checks can be restricted to the needed elements/types
and thus validation process could be considerably simplified. For this, several techniques will be
used:

• Detect the validity preserving primitives (sequence of primitives) in order to avoid the
revalidation process. In fact, some primitive preserve the validity of the instances. Inserting a
new type or new optional element cannot comprise the validity of the already existing
instances. Type renaming or duplication does not affect the validity of the instances but just
the structural organization of the template.

• Build a mapping file that records the elements affected by the changes. It describes the
original elements/types and the modified or new ones. The mapping file is a structured
document that conforms to a predefined structure definition. Structuring the mapping file is
essential for two reasons. First, it is easier to manipulate a structured mapping file either to
modify it or to automatically generate transformation scripts from it. Second, structuring the
mapping file in a standardized form (i.e., system independent) greatly increases its reusability.

• The next step is concerned with data translation, i.e., implementing the specification given by
the mapping file. The result of this step is a transformation script expressed in the XSLT
language. For each mapping element, the generated transformation rule has two roles: retrieve
and insert. First, it retrieves data instances from the source by performing the required
operations. Second, it must correctly insert elements at their actual places in the new template,
in order to generate a valid document. To ensure the validity of the produced document, the
XSLT generator traverses both the target template and the mapping file and generates
transformation rules for each target element. For this, we will adapt the already developed
XSLT generator module (see D.INF.01) to be used with the new mapping structure.

• Since we do not assume that the original and evolved templates represent the same data with
the same constraints, there may be data in the evolved templates that is not represented in the
original ones. In some cases, user interaction is required to produce new values. Additional
values (default values) can be also added automatically in order to ensure the consistency of
the transformed documents.

This part (check validity impact, generate mapping file and transformation generation) is not finalized
and is still under development. More results and details will be given in next internal reports and
deliverables.

FP6-028038

Palette D.INF.06 14 of 21

4 Template evolution prototype user interface
This section describes the current state of the proposed user interface to validate the issues discussed
in this deliverable. This interface will also evolve according to CoP members’ feedback as well as
ergonomic analysis as it was planned in the PALETTE project. The prototype is developed as a Web
application.
When the user launches the application, an overview window appears (the role of this window is to
build a visual efficient memory of the template evolution as well as instances transformation). The
window consists in two parts (Figure 2).

4.1 The overview Window
a. The top section shows the templates that are available on the server and that may be

evolved. The columns indicate the history of the evolution of the templates, i.e. the
evolved templates of the selected template appear in another column on the right, like
the column view in Mac OS X file browser. If the user selects an evolved template
from this new column, a third column will show which templates (if any) have been
evolved from this one and so on. The last column on the right is the inspector, giving a
few more information on the currently selected template and displaying the button to
click in order to proceed the evolution process.

b. The bottom of the window shows the instance documents that are associated to the
currently selected template. The user may select which ones he/she would like to
transform, according to an evolved template that has been obtained from the currently
selected one. In a second tab, the system also visualises the potentially transformable
instances which are the instances related to parent templates, i.e. templates from
which the currently selected template has been obtained.

Figure 2 : Template evolution user interface

FP6-028038

Palette D.INF.06 15 of 21

If the user wants to add a new template, the action is simply performed through the upload
screen that is displayed when the “Upload a new template” link is clicked (Figure 3). The user
may then browse his/her files to select the template to upload. Once done, the new template is
placed on the first column, i.e. it is considered as an initial template without any evolution.

4.2 Evolve a template
a. Once the user has found the template he/she would like to modify, he/she has to click

on the button “Evolve” that is displayed in the inspector column as already explained
above. The evolution workspace is then displayed (Figure 4), showing two distinct
parts. The left column shows the operations it is possible to perform on the selected
elements/types of the template, while the rest of the space is used to display the
template structure.

b. For example, the user might wish to rename one of the three elements (colored in

blue) of this simplified template. To perform this, the user has to select which element
he/she would like to rename and then click on the green button corresponding to the
renaming operation. An editing box appears where the user can modify the desired
properties of the element.

Figure 4 : Template evolution Workspace

Figure 3 : Upload template form

FP6-028038

Palette D.INF.06 16 of 21

c. Once the user is satisfied with the new template, he/she may save it and exit to go
back to the initial screen, where the evolved template will appear as an evolution of
the initial template.

4.3 Transform instances
Until now, we focused on the templates themselves. We will now review the simple
mechanism that allows us to update the instances that are associated to an initial template. As
previously mentioned, the first view also displays the instances that are related to the selected
template. This view is constituted of two tabs, each one allowing us to transform these
instances.

a. The first tab displays the instances that are associated to the initial template, which is
currently selected. The user then selects the ones he/she would like to update (or
transform), and the target template (which should be obtained by evolving the initial
one) and finally clicks on the “Transform” button.

b. The second tab shows which instances can be transformed to produce new ones that
conform to the selected template. So in this case, the user has first to select the newly
evolved template and then, the application displays the instances of the initial template
(or/and its ancestors). The same selection process has to be done to finally transform
them into instances of the selected template.

Figure 6 : Instances associated to selected template

Figure 5 : Renaming operation

FP6-028038

Palette D.INF.06 17 of 21

5 Conclusions and future work
In this deliverable we have investigated the problem of XTiger templates evolution. This was done to
answer an explicit need expressed by CoP members. For this, we proposed a set of atomic evolution
primitives as well as some more high level evolution primitives used to make a sequence of atomic
primitives usable and reusable in a more compact way.
We are extending this work in several directions. First of all, we are finalizing the user interface
described in this deliverable according to CoP members’ feedback. Second, the proposed set of
evolution primitives will be tested through case studies and may be extended or modified. Third, the
revalidation approach as well as the automatic generation of transformation scripts is being
implemented and will be tested and evaluated over real templates collections. Potential user
intervention in the revalidation process is also under study. Finally, we are also interested in making
uniform the DocReuse modules (available at http://docreuse.epfl.ch/release.html) through several
actions: (1) making uniform the layout and common functionalities of their user interfaces, (2)
offering a common repository of templates, common search functionalities and common access
policies. Issues regarding interoperability with other PALETTE services are also investigated
according to WP5 scenarios.

6 Bibliography
[Bretl 89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams, and M.
Williams. The GemStone Data Management System. In Object-Oriented Concepts, Databases and
Applications, pages 283–308. ACM Press, 1989.
[Zicari 91] R. Zicari. A Framework for O2 Schema Updates. In 7th IEEE Int. Conf. on Data
Engineering, pages 146–182, April 1991.
[Lerner 96] B.S. Lerner. A Model for Compound Type Changes Encountered in Schema Evolution.
Technical Report UM-CS-96-044, University of Massachusetts, Amherst, Computer Science
Department, 1996.
[Claypool 98] K.T. Claypool, J. Jin, and E.A. Rundensteiner. OQL SERF: An ODMG Implementation
of the Template-Based Schema Evolution Framework. In Centre for Advanced Studies Conference,
pages 108–122, November 1998.
[Kramer 01] D. K. Kramer and E. A. Rundensteiner. Xem: XML Evolution Management. RIDE-DM,
103–110, 2001.
[Bertino 02] E. Bertino, et al. Evolving a Set of DTDs according to a Dynamic Set of XML
Documents. EDBT Workshops, LNCS 2490, 45–66, 2002.
[Guerrini 06] G. Guerrini, M. Mesiti, and D. Rossi. XML Schema Evolution, TR Universit‘a di
Genova, 2006.
[Raghavachari 04] M. Raghavachari and O. Shmueli. Efficient Schema-Based Revalidation of XML.
EDBT, 639–657, 2004.

Figure 7 : Potentially transformable instances

FP6-028038

Palette D.INF.06 18 of 21

7 Appendices
7.1 The XTiger code of the motivating example
<?xml version="1.0" encoding="UTF-8"?>
<html lang="en" xmlns="http://www.w3.org/1999/xhtml"
xmlns:xt="http://wam.inrialpes.fr/xtiger" xml:lang="en">
<head>
 <title>University</title>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>
 <meta name="description" content="university librairy"/>
 <meta name="keywords" content="librairy university"/>
 <meta name="template_class" content="amaya-cv-en-0.1"/>

 <style type="text/css">...</style>
 <xt:head version="0.8" templateVersion="1.0">

 <xt:component name="address-type">
 <div class="address">
 <div class="city">
 City : <xt:use types="string"
label="city">city</xt:use>
 </div>
 <div class="state">
 State : <xt:use types="string"
label="state">state</xt:use>
 </div>
 <div class="zip">
 Zip : <xt:use types="number"
label="zip">0000</xt:use>
 </div>
 </div>
 </xt:component>

 <xt:component name="author-type">
 <h3>Author</h3>
 <div class="name">
 Name : <xt:use types="string"
label="author_name">name</xt:use>
 </div>
 <xt:use types="address-type" label="author_address"></xt:use>
 </xt:component>

 <xt:component name="book-type">
 <div class="book">
 <div class="title">
 Title : <xt:use types="string"
label="title">title</xt:use>
 </div>
 <div class="price">
 Price : <xt:use types="number"
label="price">00.00</xt:use> Frs
 </div>
 <div class="publisher">
 Publisher : <xt:use types="string"
label="publisher">publisher</xt:use>
 </div>

FP6-028038

Palette D.INF.06 19 of 21

 <div class="author">
 <xt:use types="author-type"
label="author"></xt:use>
 </div>
 </div>
 </xt:component>

 <xt:component name="journal-type">
 <div class="journal">
 <div class="name">
 Name : <xt:use types="string" label="name">journal
name</xt:use>
 </div>
 <div class="editor">
 Editor : <xt:use types="string"
label="editor">editor name</xt:use>
 </div>
 </div>
 <div class="end"></div>
 </xt:component>

 <xt:component name="article-type">
 <div class="article">
 <div class="title">
 Title : <xt:use types="string"
label="title">title</xt:use>
 </div>
 <xt:use types="author-type" label="author"></xt:use>
 </div>
 </xt:component>

 </xt:head>
</head>
<body>
 <div class="university">
 <h1>University</h1>
 <div class="name">
 <h2><xt:use types="string" label="university-name">university-
name</xt:use></h2>
 </div>
 <div class="address">
 <h2>Address</h2>
 <xt:use types="string" label="address">address</xt:use>
 </div>
 <div class="library">
 <h2>Articles</h2>
 <xt:repeat label="articles">
 <xt:use types="article-type" label="article"></xt:use>
 </xt:repeat>
 <h2>Journals</h2>
 <xt:repeat label="journals">
 <xt:use types="journal-type" label="journal"></xt:use>
 </xt:repeat>
 <h2>Books</h2>
 <xt:repeat label="books">
 <xt:use types="book-type" label="book"></xt:use>
 </xt:repeat>
 </div>
 </div>

FP6-028038

Palette D.INF.06 20 of 21

</body>
</html>

7.2 Primitives application Results

a. Change-Cardinality applied to element address

 <div class="address">
 <xt:use types="string" label="address">address</xt:use>
 </div>

Becomes
 <xt:option label="option_address">
 <div class="address">
 <xt:use types="string" label="address">address</xt:use>
 </div>
 </xt:option>

b. Insert-Subelement applied to Author-Type

 <xt:component name="author-type">
 <h3>Author</h3>
 <div class="name">
 Name : <xt:use types="string"
label="author_name">name</xt:use>
 </div>
 <xt:use types="address-type" label="author_address"></xt:use>
 </xt:component>

Becomes
 <xt:component name="author-type">
 <h3>Author</h3>
 <div class="name">
 Name : <xt:use types="string"
label="author_name">name</xt:use>
 </div>
 <xt:use types="address-type" label="author_address"></xt:use>
 <xt:use types="string" label="affiliation">affiliation</xt:use>
 </xt:component>

c. Remove-Subelement applied to the subelement “Price” of the component “Book-Type”

 <xt:component name="book-type">
 <div class="book">
 <div class="title">
 Title : <xt:use types="string"
label="title">title</xt:use>
 </div>
 <div class="price">
 Price : <xt:use types="number"
label="price">00.00</xt:use> Frs
 </div>
 <div class="publisher">
 Publisher : <xt:use types="string"
label="publisher">publisher</xt:use>

FP6-028038

Palette D.INF.06 21 of 21

 </div>
 <div class="author">
 <xt:use types="author-type"
label="author"></xt:use>
 </div>
 </div>
 </xt:component>

Becomes
 <xt:component name="book-type">
 <div class="book">
 <div class="title">
 Title : <xt:use types="string"
label="title">title</xt:use>
 </div>
 <div class="publisher">
 Publisher : <xt:use types="string"
label="publisher">publisher</xt:use>
 </div>
 <div class="author">
 <xt:use types="author-type"
label="author"></xt:use>
 </div>
 </div>
 </xt:component>

d. Change-SubelementCardinality applied to the subelement “Author” in the “Article-
Type”.

 <xt:component name="article-type">
 <div class="article">
 <div class="title">
 Title : <xt:use types="string"
label="title">title</xt:use>
 </div>
 <xt:use types="author-type" label="author"></xt:use>
 </div>
 </xt:component>

Becomes
 <xt:component name="article-type">
 <div class="article">
 <div class="title">
 Title : <xt:use types="string"
label="title">title</xt:use>
 </div>
 <xt:repeat label="repeat-author" minOccurs="1">
 <xt:use types="author-type"
label="author"></xt:use>
 </xt:repeat>
 </div>
 </xt:component>

